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Abstract

We propose Diffusion Centrality (DC) in which semantic aspects of a social net-
work are used to characterize vertices that are influential in diffusing a property p.
In contrast to classical centrality measures, diffusion centrality of vertices varies
with the property p, and depends on the diffusion model describing how p spreads.
We show that DC applies to most known diffusion models including tipping, cas-
cade, and homophilic models. We present a hypergraph-based algorithm (Hy-
perDC) with many optimizations to exactly compute DC. However, HyperDC does
not scale well to huge social networks (millions of vertices, tens of millions of
edges). For scaling, we develop methods to coarsen a network and propose a
heuristic algorithm called “Coarsened Back and Forth” (CBAF) to compute the top-
k vertices (having the highest diffusion centrality). We report on experiments com-
paring DC with classical centrality measures in terms of runtime and the “spread”
achieved by the k most central vertices (using 7 real-world social networks and 3
different diffusion models). Our experiments show that DC produces higher quality
results and is comparable to several centrality measures in terms of runtime.
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1. Introduction

An increasingly important problem in social networks (SNs) is that of assign-
ing a “centrality” value to vertices which will reflect their importance within the
SN. Well-known measures such as degree centrality [21, 46], betweenness central-
ity [8, 20], PageRank [9], closeness centrality [49, 5], and eigenvector centrality [7]
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only take the structure of the network into account—they do not differentiate be-
tween vertices that are central w.r.t. spreading one topic or meme or sentiment
vs. spreading another. A vertex that is important in spreading awareness of a mo-
bile phone program may be very unimportant in spreading information about a
restaurant. Likewise, most past work assumes that there is no information about
properties of the vertices/edges or edge weights, but in modern social networks,
at least some self-declared properties exist and, in many cases, analysis of tweets
and posts can provide further information. These omissions can cause different
problems as shown in the following toy example.

Example 1 (HIV). Figure 1 shows four people a, b, c, d, where b has HIV. Solid
edges denote sexual relationships, while dashed edges denote friend relationships.
Both “friend” and “sexual partner” relationships can play a role in the diffusion
of HIV (as friends may, unbeknownst to us, also be sexual partners). Edge weights
denote the intensity of the relationships.
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Figure 1: A small HIV social network. Shaded vertices denote people with HIV.

The table below shows the centrality of a, b, c, d w.r.t. various centrality measures.
Notice that the nature of the relationships (i.e., friend and sexual partner) are not
taken into account by these centrality measures, as they consider only the topolog-
ical structure of the network.

Centrality Measure a b c d

Degree 1 0.33 0.66 0.66
Betweenness 2 0 0 0

PageRank 0.367 0.141 0.246 0.246
Closeness 0.33 0.2 0.25 0.25

Eigenvector 0.375 0.125 0.25 0.25

The only person in this network capable of spreading HIV is b. However, b has
the lowest centrality according to all five centrality measures mentioned above.

Example 2. Consider again the same network shown in Figure 1 and suppose
the vertices denoted users on Twitter. A solid edge (u, v) denotes the fact that u
and v have both retweeted at least one of the other’s tweets, while a dashed edge
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indicates that they are friends (i.e., u follows v and vice versa). Suppose b was the
only person to have tweeted a positive opinion about a political candidate while
none of the others have done so. Then, by the same reasoning as in the previous
example, and given that Figure 1 is the entire network, we can again infer that any
other user (i.e., a, c, d) who tweets positively about the same candidate was either
influenced by b or was influenced by some exogenous process. b should clearly get
more credit for the other user’s positive tweet than anyone else, but has the lowest
centrality according to classical centrality measures.

Past centrality measures do not take into account (i) the property of interest
w.r.t. which a vertex’s “importance” is measured, (ii) how properties (e.g., HIV
in the example above) diffuse through the SN, and (iii) any semantic aspect of
the network (properties of vertices and edges), solely focusing on the topological
structure. Taking all of these aspects into account is crucial in determining the most
central vertices. We can readily think of networks (e.g., Twitter) where person A
has the highest centrality in terms of spread of support for Republicans, while per-
son B is the central player in terms of spread of support for conserving gorillas. The
network in both cases is the same (Twitter), but the most “central” person depends
on the diffusive property with respect to which a vertex is considered “influential”
or “central”. Taking into account diffusion models (e.g., how one person influences
another) is another crucial aspect. Different ways of spreading a property (e.g., a
disease) may lead to different central vertices. Furthermore, intrinsic properties
of vertices (customers, patients) and the nature and strength of the relationships
(edges) are important too. For instance, [45] talks about the role of nine different
demographic factors in influencing online purchases across 14 product categories,
showing that some demographic factors are relevant for some product types, while
others are relevant for others. This paper proposes the novel notion of diffusion
centrality that takes an SN, a diffusive property p, and a previously learned diffu-
sion model Π for p, and defines centrality of vertices based on this input. We do
not provide algorithms to automatically learn diffusion models—interested readers
may find one such algorithm in [10].

The paper’s goal is to show how diffusion centrality can be used to achieve
higher spread of a diffusive property p by using diffusion models for p rather than
classical centrality measures. We further show that this can be done for most dif-
fusion models we have seen in the literature. Last but not least, our methods are
shown to scale to social networks with over 2M vertices and 20M edges.

Real-world diffusion models fall into three diverse categories. In cascade mod-
els, there is some probability that a vertex will spread a diffusive property p to one
of its neighbors [34, 36]—these include popular disease spread models such as the
SIR model of disease spread [26]. Tipping models use other mathematical cal-
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culations such as cost-benefit analysis, often involving no probabilities, in order
to decide whether a vertex will adopt a certain behavior. Tipping models were
introduced by Nobel laureate Tom Schelling [50] to model segregation of neigh-
borhoods, and by Granovetter [24]. In homophilic models, similarities between two
vertices are considered in order to decide if the two vertices will adopt a similar
behavior [42, 12, 3]. Homophilic models use various types of distance measures
between attributes of a vertex (e.g., age, occupation, gender) and combine them via
non-probabilistic measures to achieve a degree of similarity between two vertices.

Because diffusion models vary dramatically, a paradigm to express them must
be capable of: (i) expressing semantic properties of vertices and connections be-
tween them, (ii) representing probabilistic inferences, and (iii) expressing infer-
ences based on non-probabilistic, quantitative reasoning. The suite of knowledge
representation paradigms offers several starting points. Bayesian nets and causal
inference [47] offer an obvious place to start as they can be used to express cascade
models. However, it is not clear if they can be used to express generic quantita-
tive information, which is needed to express many other real diffusion models,
such as tipping and homophilic models. In contrast, the language of General-
ized Annotated (logic) Programs (GAPs) [35] has been well-studied in knowledge
representation and is rich enough to capture a wide variety of different forms of
reasoning. It can represent both the structure of social networks (with semantics
and weight annotations) as well as these diverse types of diffusion models. In-
deed, as shown in [51], many existing diffusion models from all three aforemen-
tioned categories can be expressed as GAPs, including: the Susceptible-Infectious-
Removed (SIR) [2] and Susceptible-Infectious-Susceptible (SIS) [26] models of
disease spread; the Big Seed marketing approach [57], which is a strategy of ad-
vertising to a large group of individuals who are likely to spread the advertise-
ment further through network effects; models of diffusion of “favorited” pictures
in Flickr [13]; tipping models like the Jackson-Yariv model [28]. We also consid-
ered richer versions of GAPs, such as hybrid knowledge bases [40], but decided
they were far more expressive than needed for reasoning about diffusive processes.

The paper is organized as follows. Related work is discussed in Section 2. Sec-
tion 3 introduces basic notions used in the rest of the paper. We define Diffusion
Centrality (DC) in Section 4. Section 5 proposes a general “hypergraph fixed point
algorithm” to efficiently compute the likelihood that an arbitrary vertex has certain
properties according to the GAP diffusion model. We also define novel classes of
GAPs, together with novel optimization methods to develop the HyperDC algo-
rithm for computing DC. In Section 6, we propose the CBAF algorithm for finding
the vertices with the top-k highest diffusion centralities in an approximate way.
Section 7 describes extensive experiments comparing DC with classical centrality
measures in terms of both runtime and the “spread” generated by central vertices.
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2. Related Work

Several centrality measures have been proposed in graph theory and social net-
work analysis: degree centrality [21, 46], betweenness centrality [8, 20], PageR-
ank [9], closeness centrality [49, 5], and eigenvector centrality [7]. Variants of such
centrality measures have been proposed in [18, 1, 25], while game-theoretic cen-
trality measures have been proposed in [27, 52]. These centrality measures take
into account only the network topology for determining vertex centrality, while
DC considers additional information: the “semantics” embedded in the network,
the diffusive property with respect to which a vertex is considered “influential” or
“central”, and the model describing how such a property propagates.

There has been extensive work in reasoning about diffusion in social networks.
One well-known problem is influence maximization, that is, the problem of iden-
tifying a subset of vertices in a social network that maximizes the spread of in-
fluence. The problem was formulated as an optimization problem in the seminal
paper [33], which focuses on two propagation models: the independent cascade and
the linear threshold models. Subsequently, several approaches have been proposed
to efficiently solve the problem [39, 15, 29, 16, 23, 56, 37]. All the aforementioned
approaches consider restricted diffusion models and no vertex/edge properties are
taken into account. In contrast, our approach deals with very general diffusion
models and takes social network semantic properties into account. Being able to
accurately model the diffusion processes and incorporate the network semantics is
fundamental for correct analysis of real-world diffusion phenomena.

Another well-studied related problem is the target set selection problem [14,
17], which assumes a deterministic tipping model and seeks to find a set of vertices
of a certain size that optimizes the final number of adopters. These approaches
focus on specific diffusion models and neglect networks’ semantics.

The notion of diffusion centrality was first proposed in [31]. This paper ex-
tends [31] in different respects. In [31], diffusion models are expressed using
simple conditional probability rules, while in this paper we use the more general
language of GAPs. The algorithms introduced in this paper are more general and
efficient, and exploit several new optimizations introduced in this paper. Moreover,
we have addressed the new problem of finding an approximate set of top-k vertices
with the highest diffusion centrality and proposed efficient algorithms to solve it.

Recently, after our paper on diffusion centrality [31], a few pieces of work have
observed that no individual can be a universal influencer, and influential members
of the network tend to be influential only in one or some specific domains of knowl-
edge [4, 11, 53]. This has led to the extension of the classic independent cascade
and linear threshold models to be “topic-aware” [4, 11], thus considering propa-
gation with respect to a particular topic. Still, the diffusion models considered by
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these works are limited, as well as the characteristics of vertices and edges.
Recently, [48] has addressed the problem of coarsening a social network (that

is, finding a more succinct representation of it by grouping vertices together) while
preserving its propagation characteristics as much as possible. It works well for
the independent cascade model and considers only the structure of the network for
merging. The idea of coarsening a network has been extensively used in commu-
nity detection techniques [32]. However, they use different metrics for coarsening,
such as cut-based, flow-based, or heavy-edge matching-based conditions. Meth-
ods to compress weighted graphs into smaller ones have been proposed in [54, 55],
where nodes and edges are grouped into “supernodes” and “superedges”. No se-
mantic properties of vertices/edges or diffusion models are considered. In our
CBAF algorithm, when coarsening networks, we explicitly consider a given diffu-
sion model and merge vertices that have the same role in the process, considering
the semantic aspects of the SN. Another related problem is graph sparsification,
which relies on the notion of “spanners” [22, 41]. The main difference is that
graph sparsification removes edges (so the nodes stay the same), while we contract
the graph trying to preserve the behavior w.r.t. a given diffusion model. [43] uses
probabilistic soft logic to develop graph summarization techniques for grouping
similar entities (vertices) and relations (edges) by considering the semantic aspects
of networks. The approach does not consider any diffusion process explicitly.

3. Preliminaries

In this section, we define social networks (SNs), illustrate generalized anno-
tated programs (GAPs) from [35], and show how diffusion models can be ex-
pressed with GAPs. We refer the reader to [35] for more details on GAPs.

We model SNs as weighted directed graphs where properties can be assigned
to vertices and edges. More specifically, properties of vertices and edges are taken
from two (disjoint) sets VP and EP, respectively. For instance, a property in VP
might be hiv (meaning that a vertex has HIV), while properties in EP might be fr
and sp, representing friend and sexual relationships, respectively—e.g., if an edge
is assigned property fr, then its endpoints are friends.

A social network (SN) is a tuple (V,E,VL, ω) where:

1. V is a finite set of vertices;

2. E ⊆ V × V × EP is a finite set of (labeled) edges;

3. VL : V → 2VP assigns a set of properties to each vertex;

4. ω : E → (0, 1] assigns a weight to each edge.
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Thus, an SN is a directed graph where VL assigns a set of properties to each
vertex, and there can be multiple labeled edges between a given pair of vertices,
each of which is associated with a weight and a unique edge property. An SN is
depicted in Figure 1, where property hiv is assigned to vertex b, sp is assigned to
solid edges, and fr is assigned to dashed edges.

Below we briefly recall GAPs. We start with an example that illustrates a GAP
modeling the spread of HIV in SNs like the one in Figure 1.

Example 3. A GAP Πhiv for the SN of Example 1 might be:

[r1] hiv(V ) : 0.9×X × Y ← sp(V, V ′) : Y ∧ hiv(V ′) : X
[r2] hiv(V ) : 0.4×X × Y × Y ′ ← fr(V, V ′) : Y ∧ sp(V ′, V ′′) : Y ′ ∧ hiv(V ′′) : X
[r3] hiv(V ) : 0.6×X × Y × Y ′ ← sp(V, V ′) : Y ∧ sp(V ′, V ′′) : Y ′ ∧ hiv(V ′′) : X

The first rule says that the confidence that a vertex V has HIV, given that a partner
V ′ has HIV with confidence X , is 0.9×X×Y , where Y is the weight of the sexual
relationship between the two vertices. The other rules can be similarly read.

We will treat properties in VP as unary predicate symbols, called vertex predi-
cate symbols, and properties in EP as binary predicate symbols, called edge pred-
icate symbols. Given a vertex (resp. edge) predicate symbol p, then p(t) (resp.
p(t1, t2)) is a vertex atom (resp. edge atom), where t, t1, t2 are variables or
constants representing vertices. For instance, in Example 3 above, hiv(V ) and
sp(V, V ′) are a vertex atom and an edge atom, respectively.

An (edge or vertex) annotated atom is of the form A : µ, where A is an (edge
or vertex) atom, and µ is an annotation term, that is, an expression built from
functions, variables (distinct from those used inside atoms), and real numbers in
[0, 1]. For instance, in Example 3, hiv(V ) : 0.9×X × Y is an annotated atom.

A GAP-rule (or simply rule) is of the formA0 : µ0 ← A1 : µ1 ∧ . . .∧ An : µn
where n ≥ 0 and every Ai : µi is an annotated atom. A0 : µ0 is the head of the
rule, whileA1 : µ1 ∧ . . .∧An : µn is the body of the rule. A generalized annotated
program (GAP) is a finite set of rules.

We assume that VP contains a distinguished vertex predicate symbol vertex
that represents the presence of a vertex in an SN. Every SN S = (V,E,VL, ω) can
be represented by a GAP, denoted ΠS , as follows:

ΠS = {vertex(v) : 1 | v ∈ V } ∪ {p(v) : 1 | v ∈ V ∧ p ∈ VL(v)} ∪
{ep(v1, v2) : ω(〈v1, v2, ep〉) | 〈v1, v2, ep〉 ∈ E}

When we augment ΠS with rules describing how certain properties diffuse
through the social network, we get a GAP Π ⊇ ΠS that captures both the structure
of the SN and the diffusion principles. In this paper we consider a restricted class of
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GAPs: every rule with a non-empty body has a vertex annotated atom in the head
([35] allows any annotated atom in the head of a rule). Thus, edge atoms can appear
only in rule bodies or rules with an empty body. This restriction results from the set
of diffusion models we consider in this paper: neither edge weights nor edge labels
change as the result of the diffusion. However, most of the techniques developed
in this paper can be directly applied to or easily generalized for unrestricted GAPs.

An (annotated) atom (resp. rule, GAP) is ground iff it contains no variables
(neither inside atoms nor in annotation terms). We use A to denote the set of all
ground atoms. Moreover, grd(r) denotes the ground instances of a rule r, i.e. the
set of all rules obtained from r by replacing every occurrence of a variable in an
annotation term with a real number in [0, 1], and every occurrence of a variable
inside an atom with a vertex. Given a GAP Π, we define grd(Π) =

⋃
r∈Π grd(r).

We now briefly recall the semantics of GAPs. An interpretation I is a mapping
from the set of all ground atoms A to [0, 1]. We say that I satisfies a ground
annotated atom A : µ, denoted I |= A : µ, iff I(A) ≥ µ. [35] associates an
operator TΠ that maps interpretations to interpretations with any GAP Π. Suppose
I is an interpretation. Then,

TΠ(I)(A) = max({I(A)} ∪ {µ | A : µ← AA1 ∧ . . . ∧ AAn is in grd(Π) and
for all 1 ≤ i ≤ n, I |= AAi})

Roughly speaking, the semantics of GAPs requires that when there are multiple
ground instances of GAP-rules with the same head that “fires”, the highest anno-
tation in any of these ground rules is assigned to the head atom. [35] shows that if
we start from the interpretation that assigns 0 to every ground atom and iteratively
apply TΠ, then we reach a least fixed point, denoted lfp(Π), which captures the
ground atomic logical consequences of Π.

Example 4. Consider the social network S of Example 1 and the GAP Πhiv of
Example 3. Let Π be the GAP modeling both the SN and the diffusion model, i.e.,
Π = ΠS ∪ Πhiv. Then, TΠ reaches a least fixed point at the third iteration, as
shown in Table 1. Edge atoms are not reported in the table, as their annotations
and weights do not change by applying TΠ (because edge atoms do not appear in
rule heads). Specifically, 0.1 is assigned to sp(a, b), sp(b, a), sp(a, c), and sp(c, a),
0.8 is assigned to fr(a, d) and fr(d, a), and 0.7 is assigned to fr(c, d) and fr(d, c).

Initially, 0 is assigned to all ground atoms (iteration 0). Next, 1 is assigned to
the ground atom hiv(b), because b has HIV in the original SN (iteration 1). From
now on, rules in Πhiv can be used to assign higher values to (vertex) ground atoms.
Specifically, at iteration 2, the following rules can “fire”:

[r′1] hiv(a) : 0.9× 1× 0.1← sp(a, b) : 0.1 ∧ hiv(b) : 1
[r′2] hiv(d) : 0.4× 1× 0.8× 0.1← fr(d, a) : 0.8 ∧ sp(a, b) : 0.1 ∧ hiv(b) : 1
[r′3] hiv(c) : 0.6× 1× 0.1× 0.1← sp(c, a) : 0.1 ∧ sp(a, b) : 0.1 ∧ hiv(b) : 1
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Iteration of TΠ hiv(a) hiv(b) hiv(c) hiv(d)

0 0 0 0 0
1 0 1 0 0
2 0.09 1 0.006 0.032
3 0.09 1 0.0081 0.032
4 0.09 1 0.0081 0.032

Table 1: Iterations of TΠ.

and are used to assign 0.09 to hiv(a), 0.032 to hiv(d), and 0.006 to hiv(c).
At the subsequent iteration (iteration 3), the following rule can fire and is used

to assign a higher value to hiv(c), namely 0.0081:

[r′′1 ] hiv(c) : 0.9× 0.09× 0.1← sp(c, a) : 0.1 ∧ hiv(a) : 0.09

No higher values can be derived from a further application of TΠ, and thus the
least fixed point is reached, assigning 0.09 to hiv(a), 1 to hiv(b), 0.0081 to hiv(c),
and 0.032 to hiv(d).

Example 5. Suppose the SN in Figure 1 represents Cell phone users, all edges
have property fr representing friendship relations, and vertices have properties like
male, female, young, old, and adopter, telling us if the user adopted a cell phone
plan. The phone company wants to identify important users. Suppose d is male
and everyone else is female; initially nobody is an adopter. A cell phone provider
may have a diffusion rule learned from past promotions:

adopter(V ′) : 0.6×X × Y ← adopter(V ) : X ∧male(V ) : Y ∧ fr(V, V ′) : 0.1

The vertex which has the greatest influence, if given a free mobile phone plan
and if the above diffusion model is used, is clearly d (because this is the only vertex
that can “influence” others to adopt the plan). However, we see from the table in
Example 1 that d is not the most relevant vertex w.r.t. to all centrality measures.

4. Diffusion Centrality

Diffusion centrality tries to measure how well a vertex v can diffuse a property
p (e.g., the hiv property). Given an SN S = (V,E,VL, ω), a vertex predicate
symbol p, and a vertex v ∈ V , the insertion of p(v) into S, denoted S⊕p(v), is the
SN (V,E,VL′, ω) where VL′ is exactly like VL except that VL′(v) = VL(v) ∪ {p}.
In other words, inserting p(v) into a social network merely says that vertex v has
property p and that everything else about the network stays the same. Likewise, the
removal of p(v) from S, denoted S 	 p(v), is the social network (V,E,VL′′, ω)
which is just like S except that VL′′(v) = VL(v) \ {p}.
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Definition 1 (Diffusion Centrality). Let S = (V,E,VL, ω) be an SN, Π a GAP,
and p a property. The diffusion centrality (DC for short) of a vertex v ∈ V w.r.t.
Π, p, and S, denoted dcΠ,p,S(v), is defined as follows:∑

v′∈V \{v}

lfp(Π ∪ΠS⊕p(v))(p(v
′)) −

∑
v′′∈V \{v}

lfp(Π ∪ΠS	p(v))(p(v
′′))

Whenever Π, p, and S are clear from the context, we denote the diffusion
centrality of a vertex v simply as dc(v).

This definition says that computing the diffusion centrality of vertex v involves
two steps. First, we assume that vertex v has property p and see how much diffusion
occurs. This is done by computing the least fixed point of the diffusion model and
the SN S ⊕ p(v) (i.e., the original SN where p is assigned to v). Notice that the
overall diffusion is quantified by summing up the values that the least fixed point
assigns to atoms of the form p(v′) across all vertices v′ 6= v of S. Then, we assume
that vertex v does not have property p and see how much diffusion occurs. This is
done by computing the least fixed point of the diffusion model and the SN S	p(v)
(i.e., the original SN where p is not assigned to v). The diffusion centrality of v
is the difference between the above two numbers and captures the “impact” that
would occur in terms of diffusion of property p if vertex v had property p.1

Notice that the least fixed point of Π and S ⊕ p(v) (or S 	 p(v)) takes into
account the initial assignment of p to the vertices of S . Thus, DC depends also on
the initial assignment of p in S. For instance, consider two SNs that are identical
except that in the first one every vertex has property p, while in the second one
no vertex has property p. In the first SN, dc(v) = 0 for every vertex v, because
whether p is given to v or not has no impact, since everyone already has p. In
contrast, in the second SN, dc(v) reflects how much overall spread of p we achieve
in the SN by assigning p to v.

Example 6. Consider again the HIV SN of Example 1 and the GAP of Example 3.
Recall that the only vertex with property hiv is b. It can be easily verified that the
values for the positive and negative summands of Definition 1 for all vertices are
as reported in the following table.

1Considering just the first summation of Definition 1 is wrong. Suppose we have an SN and a
vertex v s.t. the first summation of dc(v) is a high number N (i.e., N is the expected number of
vertices with property p assuming that v has property p). Suppose that when we assume that v does
not have property p, the same value N is determined (i.e., the second summation equals N ). Then,
intuitively, v should not have a high diffusion centrality as the expected number of vertices with
property p is the same regardless of whether v has property p or not (thus, v does not play a central
role in diffusing p). In contrast, considering just the first summation would give v a high centrality.
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a b c d
Positive Summand 1.122 0.13 1.122 1.0981
Negative Summand 1.0401 0 1.122 1.0981
Diffusion Centrality 0.0819 0.13 0 0

For instance, consider vertex a. If we assume that hiv is given to a in the
original SN, then we get an overall spread of hiv of 1.122 (positive summand of
Definition 1). If we assume that hiv is not given to a in the original SN, then
we get an overall spread of hiv of 1.0401 (negative summand of Definition 1).
Then, the diffusion centrality of a is the difference of these two values. The same
argument can be applied to the remaining vertices. It is worth noting that if hiv
is not assigned to b in the original SN, then no spread of hiv occurs (the negative
summand for b is 0), because nobody else has HIV in the SN.

Thus, b has the highest centrality w.r.t. hiv and Πhiv—classical centrality mea-
sures (Example 1) do not capture this because b is not a “central” vertex from a
purely topological perspective. However, b should have the highest centrality be-
cause it is the only one with HIV. Vertices c and d do not increase the confidence of
any vertex to have HIV. So their diffusion centrality is zero.

Example 7. If we return to the cell phone case (Example 5), we see that the DC of
d is 1.2, while all other vertices have 0 as their DC. Furthermore, as opposed to
classical centrality metrics, c and d do not have the same centrality, because their
properties and the diffusion of interest make them important to a different extent.

Diffusion Centrality Problem (DCP). Given an SN S = (V,E,VL, ω), a GAP Π,
and a property p, the diffusion centrality problem consists of finding the DC (w.r.t.
Π, p, and S) of every vertex of S.
Top-k Diffusion Centrality Problem (kDCP). Given a 0 < k < |V |, the top-k
diffusion centrality problem consists of finding a set T of k vertices of S having
the highest DC, that is, the DC of every vertex in T is greater than or equal to the
DC of every vertex in V \ T .

5. The HyperDC Algorithm for Exact Diffusion Centrality Computation

In this section, we present the HyperDC algorithm (Section 5.3), which solves
DCP exactly using the HyperLFP algorithm (Section 5.2) to compute the least fixed
point of a GAP. We start with a set of optimizations that can speed up HyperDC.

5.1. Optimization Steps
We first present optimizations that can be applied to arbitrary GAPs, and then

identify two subclasses of GAPs for which DC can be computed even more effi-
ciently. Before that, we introduce notation and terminology used in the following.
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The dependency graph of a GAP Π is a directed graph dep(Π) whose vertices
are the predicate symbols in Π. There is an edge from a predicate symbol q to a
predicate symbol p iff there is a rule in Π where p occurs in the head and q occurs
in the body. We say that p depends on q if there exists a path from q to p in dep(Π).
If p depends on q and vice versa, then we say that p and q are mutually recursive.
We use MΠ,p to denote the set of all predicate symbols that are mutually recursive
with p. We define RΠ,p as the set of predicate symbols q such that (i) p depends on
q, and (ii) q appears in the head of some rule of Π. Note that MΠ,p ⊆ RΠ,p. Given
a GAP Π and a property p, we define

Πp = {r ∈ Π | p is the head predicate symbol of r, or
p depends on the head predicate symbol of r}.

We are now ready to introduce our first optimization.

Caching lfp. When computing dc(v), we note that S, S⊕p(v), and S	p(v) differ
only in whether or not vertex v has property p. One way to leverage this is to first
compute and cache lfp(Π ∪ ΠS) independent of v. We then only need to calculate
one summation in order to compute dc(v).

Proposition 1. Consider a social network S = (V,E,VL, ω), a GAP Π, and a
property p. Let φ = lfp(Π ∪ΠS) and v be a vertex in V . Then,

dc(v) =


∑

v′∈V \{v}
φ(p(v′))−

∑
v′′∈V \{v}

lfp(Π ∪ΠS	p(v))(p(v
′′)) if p ∈ VL(v)∑

v′∈V \{v}
lfp(Π ∪ΠS⊕p(v))(p(v

′))−
∑

v′′∈V \{v}
φ(p(v′′)) if p /∈ VL(v)

PROOF. Consider a vertex v ∈ V . If v has property p, then, by definition of
S ⊕ p(v), we have that φ = lfp(Π ∪ ΠS⊕p(v)) and the first equation holds. Like-
wise, if v does not have property p, then, by definition of S 	 p(v), we have that
φ = lfp(Π ∪ΠS	p(v)), and thus the second equation follows too. �

Network filtering. We now present an optimization, called network filtering, which
consists of reducing the given SN by removing vertices (and the relative incoming
and outgoing edges) that do not play any role in the diffusion process, i.e., those
vertices that can never receive or transmit diffusive property p from/to other ver-
tices in the SN via any rule in the considered diffusion model. As shown in the
following, network filtering is a sound optimization technique, that is, its aim is
to reduce the size of the SN (so as to make the DC computation faster) without
altering the DC values. Specifically, removed vertices have zero DC in the original
SN, while the DC of the remaining vertices in the reduced SN is the same as in the
original one (cf. Proposition 2).
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Example 8. Consider the diffusion model Πhiv from Example 3:

hiv(V ) : 0.9×X ×W ← sp(V, V ′) : W ∧ hiv(V ′) : X
hiv(V ) : 0.4×X ×W ×W ′ ← fr(V, V ′) : W ∧ sp(V ′, V ′′) : W ′ ∧ hiv(V ′′) : X
hiv(V ) : 0.6×X ×W ×W ′ ← sp(V, V ′) : W ∧ sp(V ′, V ′′) : W ′ ∧ hiv(V ′′) : X

Suppose v is a vertex with no sp relations (in a given SN). Moreover, suppose
none of v’s friends have sp relations. Then, v is an “unnecessary” vertex (for the
purpose of computing DC) because there is no rule r ∈ Πhiv by which vertex v can
receive property hiv or transmit hiv to other vertices. In fact, it is easy to see from
the rules above that a vertex cannot transmit hiv if it does not have sp relations.
Moreover, a vertex cannot get hiv if it does not have sp relations (the first and
third rules cannot be applied) and its friends have no sp relations (the second rule
cannot be applied).

Thus, roughly speaking, network filtering matches diffusion rules against ver-
tices to identify vertices that do not participate in the activation of any rule, regard-
less of how many properties are involved in the diffusion rules and in the SN.

Definition 2 (Rule activation). Given a GAP Π, a property p, and a rule r ∈ Π,
we define relbody(r) = {AA | AA is an annotated atom in the body of r and its
predicate symbol is not in RΠ,p}. Vertex v of an SN S activates a rule r ∈ Π iff
there exists a ground rule r′ ∈ grd(r) such that:

1. for every AA ∈ relbody(r′), ΠS |= AA;

2. if A : µ is the head of r′, then µ > 0; and

3. v appears in an annotated atom of the body of r′.

Definition 3 (Necessary and unnecessary vertices). Let S be an SN, Π be a GAP,
and p a property. A vertex of S is necessary if it activates a rule of Πp, otherwise
it is unnecessary.

Roughly speaking, a necessary vertex is one that might “trigger” some rule dur-
ing the least fixed point computation, while unnecessary vertices have no chance
of being involved in the least fixed point computation. Identifying necessary ver-
tices is similar in spirt to the identification of relevant rules in probabilistic logic
programs, where the aim is to find ground rules that are relevant for the given
query [19]. In our case, we are interested in the values assigned to ground atoms
of the form p(v), which are in a sense the query atoms—here p is the diffusive
property. However, rather than getting rid of ground rules, we get rid of vertices
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(i.e., constants) that are “irrelevant”. This is important in our applications where
the SN may have millions of vertices and disregarding the irrelevant ones can yield
significantly better performances. Of course, disregarding some vertices lead to
disregarding some ground rules as well (i.e, those ground rules containing at least
one irrelevant vertex). The filtering of a social network eliminates all unnecessary
vertices (along with their incoming/outgoing edges).

Definition 4 (Network Filtering). Let S = (V,E,VL, ω) be an SN, Π a GAP, p a
property, and U the set of unnecessary vertices. The filtering of S (w.r.t. Π and p)
is the SN S ′ = (V ′, E′,VL′, ω′) where:

1. V ′ = V \ U ;

2. E′ = E \ {〈u, v, q〉 ∈ E | u ∈ U ∨ v ∈ U};

3. VL′(v) = VL(v) for all v ∈ V ′;

4. ω′(e) = ω(e) for all e ∈ E′.

The filtering S ′ of an SN S is useful because unnecessary vertices have a DC
of zero in S, while the DC of necessary vertices can be computed on the (smaller)
SN S ′ in a sound way, that is, their DC in S ′ is the same as in S.

Proposition 2. Let S be an SN, Π be a GAP, p a property, and S ′ the filtering of
S. For every vertex v of S, if v is unnecessary, then dcΠ,p,S(v) = 0, otherwise (v
is necessary) dcΠ,p,S(v) = dcΠ,p,S′(v).

PROOF. If a vertex v is unnecessary, it cannot activate any rule in Π, thus, in-
dependent of whether or not it has the diffusion property p, it does contribute to
diffusing p to other vertices (see item 2 of Definition 2). It follows that∑
v′∈V \{v} lfp(Π ∪ΠS⊕p(v))(p(v

′)) =
∑
v′∈V \{v} lfp(Π ∪ΠS	p(v))(p(v

′)) =∑
v′∈V \{v} lfp(Π ∪ΠS)(p(v′)), and then dcΠ,p,S(v) = 0.

If a vertex v is necessary, all the rules it activates contain necessary vertices, and
then we have that∑
v′∈V \{v} lfp(Π ∪ΠS⊕p(v))(p(v

′)) =
∑
v′∈V \{v} lfp(Π ∪ΠS′⊕p(v))(p(v

′)),∑
v′∈V \{v} lfp(Π ∪ΠS	p(v))(p(v

′)) =
∑
v′∈V \{v} lfp(Π ∪ΠS′	p(v))(p(v

′)).

It follows that dcΠ,p,S(v) = dcΠ,p,S′(v). �

Subclasses of GAPs. We now introduce p-monotonic GAPs, a class of GAPs to
which we can apply further optimizations (in addition to those discussed so far).
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Definition 5 (p-monotonic GAP). We say that a rule A0 : µ0 ← A1 : µ1 ∧ . . . ∧
An : µn is monotonic iff µ0 is a monotonic function2. Given a GAP Π and a
property p, we say that Π is p-monotonic iff, for every rule r in Π, when the head
predicate symbol is in RΠ,p then r is monotonic.

Example 9. Consider the GAP Π of Example 3, for which RΠ,hiv = {hiv}. To see
if Π is hiv-monotonic we need to check if for every rule in Π having an annotated
atom of the form hiv(V ) : µ in the head, we have that µ is a monotonic function.
Since this is the case, then Π is hiv-monotonic. The following GAP

p(V ) : 0.5×X ×W ← fr(V, V ′) : W ∧ p(V ′) : X
q(V ) : (1−X)×W ← fr(V, V ′) : W ∧ p(V ′) : X
p(V ) : 0.9×X ×W ← fr(V, V ′) : W ∧ q(V ′) : X

is not p-monotonic because RΠ,p = {p, q} and the annotation of the head atom of
the second rule is a non-monotonic function.

Given a GAP Π and a property p, we define the p-interfered predicate set as
follows:

IΠ,p =

{
MΠ,p if Π is p-monotonic
RΠ,p if Π is not p-monotonic

Thus, the p-interfered predicate set contains all the predicate symbols that are
mutually recursive with p if the GAP Π is p-monotonic, while, if Π is not p-
monotonic, it is the set of predicate symbols q such that p depends on q and q
appears in the head of some rule in Π. For instance, IΠ,hiv = {hiv} for the GAP
of Example 3, while IΠ,p = {p, q} for the GAP of Example 9. Notice that when
IΠ,p = RΠ,p, then IΠ,p is bigger as MΠ,p ⊆ RΠ,p.

Recall that, given a GAP Π and a property p, then Πp is the set of rules r in
Π such that either p depends on the head predicate symbol of r or p is the head
predicate symbol. We also define

Π∗p = {r ∈ Πp | every predicate symbol q in the body of r is s.t. q /∈ IΠ,p}.

Roughly speaking, rules in Πp are the only ones that may affect the values
assigned to ground atoms of the form p(v) in the least fixed point—so, we can
ignore rules in Π \ Πp. Moreover, Πp can be partitioned into two sets: Π∗p and
Πp \ Π∗p. We can first evaluate Π∗p over the SN, as it does not depend on the

2If µ0 is a constant, it is considered to be monotonic. Moreover, if µ0 = f(. . .), then µ0 is
monotonic if f is monotonic, i.e., if xi ≤ yi for all 1 ≤ i ≤ n, then f(x1, . . . , xn) ≤ f(y1, . . . , yn),
where n is the number of arguments of f .
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remaining rules in Πp. Then, Πp \Π∗p can be evaluated. This somehow reminds of
the stratification of logic programs, where a program is partitioned into different
“strata”, which are evaluated one at a time according to an order dictated by their
dependencies. In our case, we first evaluate a “base stratum” (namely Π∗p), and
then use its result as a starting point for the evaluation of a stratum consisting of
“mutually recursive” rules (namely Πp \ Π∗p). Thus, in our setting, we have two
strata, as we are interested in just one “special” predicate p modeling the diffusive
property. The following proposition states precisely how Πp and Π∗p are exploited
(recall that A denotes the set of all ground atoms).

Proposition 3. Consider an SN S , a property p, and a GAP Π. Let ψ be the
interpretation lfp(ΠS ∪ Π∗p). Then, lfp(Π ∪ ΠS)(p(v)) = lfp((Πp \ Π∗p) ∪ {A :
ψ(A) | A ∈ A})(p(v)) for every vertex v of S.

While the previous proposition can be applied to arbitrary GAPs, it becomes
more effective for p-monotonic ones, because IΠ,p is smaller and thus Π∗p (which
is “precomputed” at an initial stage) is larger. In general, the smaller IΠ,p is, the
more effective the proposition above will be.

Example 10. Consider the following GAP Π:

[r1] s(V ) : 0.5×X ← p(V ) : X
[r2] p(V ) : W ×X × Y ← fr(V, V ′) : W ∧ p(V ) : X ∧ s(V ′) : Y
[r3] s(V ) : 0.6×X ×W ← fr(V, V ′) : W ∧ q(V ′) : X
[r4] q(V ) : 0.9×X ×W ← fr(V, V ′) : W ∧male(V ′) : X

Suppose p is the diffusive property. Clearly, Π is p-monotonic (all rule heads con-
tain monotonic functions), Πp = Π, and Π∗p = {r3, r4}, as all predicate symbols in
the body of r3 (resp. r4) are not mutually recursive with p. Proposition 3 says that,
for every SN S, we can first compute the interpretation ψ defined as lfp(ΠS ∪Π∗p).
Then, starting from ψ, the GAP consisting only of r1 and r2 is evaluated.

Below we present another class of GAPs, called p-dwindling. As discussed
in the next section, for p-dwindling GAPs our HyperLFP algorithm has a faster
convergence to the least fixed point.

Definition 6 (p-dwindling GAP). Suppose p is a property. A GAP Π is p-dwindling
iff for every ground rule A0 : µ0 ← A1 : µ1 ∧ . . . ∧ An : µn in grd(Π) s.t. q
is the predicate symbol of A0 and q ∈ IΠ,p, it is the case that µ0 ≤ µi for every
1 ≤ i ≤ n s.t. the predicate symbol of Ai is in IΠ,p.

For the Flickr, Jackson-Yariv, and SIR models (see Appendix A) we consider
in our experimental evaluation, we can state the following properties.
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Proposition 4. The Flickr model is p-monotonic and p-dwindling. The Jackson-
Yariv model is p-monotonic but not p-dwindling. The SIR model is neither p-
monotonic nor p-dwindling.

5.2. The HyperLFP Algorithm

In this section, we propose an efficient hypergraph-based algorithm, Hyper-
LFP, to compute the least fixed point used for diffusion centrality computation.

A directed hypergraph is a pair 〈V,H〉 where V is a finite set of vertices and
H is a finite set of directed hyperedges. A hyperedge is a pair 〈S, t〉 where S is
a set of vertices, called source set, and t is a vertex, called target vertex. Given a
hyperedge h ∈ H , S(h) denotes its source set and t(h) denotes its target vertex.

We now define a hypergraph that captures how a property p diffuses through an
SN S according to a GAP Π. The hypergraph does not depend on which vertices
have property p in the original SN, but depends only on Π and the structure of S
in terms of edges and vertex properties other than p. Therefore, given a GAP Π
and an SN S, the diffusion hypergraph has to be computed only once and can be
used with different assignments of a property p to the vertices of S. This allows us
to save time in computing diffusion centrality which requires computing the least
fixed point for different initial assignments of p. However, if the SN changes, the
diffusion hypergraph needs to be recomputed. In addition, the hypergraph allows
us to eliminate diffusion rules that are useless for computing the least fixed point.

Definition 7 (Enabled Rule). Consider an SN S, a GAP Π, and a property p. Let
ϕ = lfp(ΠS ∪ Π∗p). A rule r ∈ grd(Π − Π∗p) is enabled iff ϕ(A) ≥ µ for every
annotated atom A : µ in the body of r whose predicate symbol is not in IΠ,p.

Intuitively, enabled rules are the ground rules that can affect the diffusion of p
(directly or indirectly) in the least fixed point computation.

Example 11. Consider the GAP Πhiv of Example 3 and the SN of Example 1 (cf.
Figure 1). In this case, we have Π∗p = ∅, ϕ = lfp(ΠS), and the following ground
instance of the second rule belongs to grd(Π−Π∗p):

[r] hiv(d) : 0.4× 0.8× 0.1× 1← fr(d, a) : 0.8 ∧ sp(a, c) : 0.1 ∧ hiv(c) : 1

The rule above is enabled as ϕ(fr(d, a)) = 0.8 and ϕ(sp(a, c)) = 0.1. Notice that
the atom hiv(c) does not play any role in determining whether or not the rule is
enabled because hiv ∈ IΠ,hiv (recall that IΠ,hiv = {hiv}).

Definition 8 (Diffusion Hypergraph). Consider an SN S = (V,E,VL, ω), a GAP
Π, and a property p. The hyperedge associated with a ground rule r ∈ grd(Π)
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whose head annotated atom is of the form p′(v) : µ is defined as 〈{p′′(vi) | p′′(vi) :
µi is in the body of r and p′′ ∈ IΠ,p}, p′(v)〉 and is denoted by hedge(r). The dif-
fusion hypergraphH(S,Π, p) is a triple 〈N,H,W 〉 such that:

1. 〈N,H〉 is a directed hypergraph with N = {q(v) | q ∈ IΠ,p and v ∈ V },
andH = {hedge(r) | r is an enabled ground rule of Π whose head predicate
symbol is in IΠ,p},

2. W is a function such that for each h ∈ H and matrix M [1...|IΠ,p|][1..|V |]
of real values in [0, 1], W (h,M) is the head annotation of the ground rule r
satisfying the following two properties: (i) hedge(r) = h, and (ii) for every
atom q(v) appearing in S(h), M [q][v] is equal to the annotation of q(v) in r.

Example 12. Figure 2 shows the diffusion hypergraph for the GAP Πhiv of Ex-
ample 3 and the social network of Example 1. Since IΠ,hiv = {hiv} and V =
{a, b, c, d}, the nodes of the diffusion hypergraph are N = {hiv(a), hiv(b), hiv(c),
hiv(d)}. The hyperedges are derived from enabled ground rules. Consider for in-
stance the enabled ground rule r from Example 11. This rule corresponds to the
hyperedge hedge(r) = 〈{hiv(c)}, hiv(d)〉 because {hiv(c)} is the set of atoms in
the body of r s.t. the predicate symbols belongs to IΠ,hiv and hiv(d) is the atom
in the head of the rule. The hyperedge labels represent the function W , i.e. the
label on a hyperedge is the function in the annotation of the head atom of the cor-
responding rule. For instance, for the rule r from Example 11, the label on the
hyperedge hedge(r) is 0.4 × (0.8 × 0.1) × hiv(c) (where 0.4 is a constant in the
function and the values 0.8 and 0.1 are precomputed) and represents how we have
to update the value for hiv(d) once that the value of hiv(c) has changed.

hiv(a)

hiv(b)

hiv(c)

hiv(d)

0.9x0.1xhiv(b)

0.9x0.1xhiv(a)

0.6x0.01xhiv(c)

0.4x0.07xhiv(a)
0.6x0.01xhiv(b)

0.4x0.08xhiv(b)

0.9x0.1xhiv(c)

0.9x0.1xhiv(a)
0.4x0.08xhiv(c)

Figure 2: A diffusion hypergraph.
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Algorithm 1 HyperLFP
Input: For a social network S = (V,E,VL, ω), a GAP Π, and a property p,

two matrices U [1...|IΠ,p|][1..|V |] and M [1...|IΠ,p|][1..|V |],
a max-heap Heap, the diffusion hypergraphH(S,Π, p) = 〈N,H,W 〉

Output: lfp(Π ∪ΠS)(q(v)) for all v ∈ V and q ∈ IΠ,p
1: C ← copy of M;
2: M ′ ← copy of M;
3: while Heap 6= ∅ do
4: Heap′ ← ∅;
5: while Heap 6= ∅ do
6: 〈h,w〉 ← deleteMax(Heap);
7: Let q(v) = t(h);
8: if M ′[q][v] < w then
9: M ′[q][v]← w;

10: for each h′ ∈ U [q][v] do
11: w′ ←W (h′,M ′);
12: Let q′(v′) = t(h′);
13: if w′ > C[q′][v′] then
14: C[q′][v′]← w′;
15: if Π is p-monotonic then
16: Add 〈h′, w′〉 to Heap;
17: else
18: Add 〈h′, w′〉 to Heap′;
19: Heap ← Heap′;
20: return M ′;

The rough idea of the HyperLFP algorithm (Algorithm 1) is that hyperedges
that propagate a value greater than zero are kept in a max-heap and those propagat-
ing higher values are visited first; the max-heap is updated as propagation unfolds.

For all q ∈ IΠ,p and v ∈ V , M [q][v] is the initial value of the ground atom
q(v), U [q][v] keeps track of the hyperedges having q(v) in their source set, and
M ′[q][v] is the current assignment to q(v). Specifically, M ′[q][v] is initially set
to M and then iteratively updated by the algorithm. C keeps track of the highest
values propagated by hyperedges that were added to Heap. At each iteration of the
while loop on lines 5–18, a pair 〈h,w〉 with maximum w is retrieved from Heap.
If M ′[q][v] is less than w, it is set to w, otherwise another hyperedge is retrieved
from Heap. If w is assigned to M ′[q][v], then hyperedges that can be affected by
this are inspected (for each loop on lines 10–18). Only the hyperedges having t(h)
in the source set are inspected. For each of them, if no hyperedge added to Heap
propagated a higher value (line 13), then if Π is p-monotonic the hyperedge is
added to Heap (along with the value it propagates), otherwise it is added to Heap′.
The reason for this is that when Π is p-monotonic we can retrieve hyperedges in
descending order of their weights even if their values were derived from different
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iterations of TΠ. However, if Π is not p-monotonic, the iterations of TΠ must be
executed one after the other without mixing the values derived at each of them. So,
when Π is not p-monotonic, hyperedges are retrieved in descending order of their
weight for each iteration of TΠ. When Heap is empty, Heap′ is assigned to Heap.
M ′ is returned if both heaps are empty.

If a GAP Π is p-dwindling and p-monotonic, then HyperLFP ensures that when
a valuew is assigned to a ground atom q(v), w is the final value for q(v) in the least
fixed point; hence the hyperedge that propagated w as well as any other hyperedge
having q(v) as a target atom no longer needs to be considered in order to see if a
new higher value can be assigned to q(v).

Proposition 5. The worst-case time complexity of Algorithm HyperLFP isO(|N |+
1
α ·|H|·(log |H|+Umax·(Smax+log |H|))), whereUmax = maxv∈V,q∈IΠ,p{|{h | h ∈
H ∧ q(v) ∈ S(h)}|}, Smax = maxh∈H{|S(h)|}, and α is the minimum value ob-
tained at line 9 for (w −M ′[q][v]).

5.3. The HyperDC Algorithm
The HyperDC algorithm (Algorithm 2) initializes Min, U , and Heapin by call-

ing Algorithm 3 (line 1), and then uses them to compute lfp(Π ∪ ΠS) (lines 2–4).
After that, the diffusion centrality of each vertex is computed (lines 6–25). Specifi-
cally, the value of atom p(v) is incorporated intoMin, and Heap is updated accord-
ingly (lines 7–16). Then, the least fixed point is computed using the updated Min

and Heap (lines 17–18). Finally, the diffusion centrality of vertex v is computed
and the value of p(v) in Min is restored (lines 19–25). In this last step, Proposi-
tion 1 is leveraged. In fact, if p ∈ VL(v′), the positive summand of the definition
of DC has already been computed in lines 2–4 and what is being computed is the
negative summand. In this case, the positive summand is equal to sump − F [p][v]
and the negative summand is equal to sum′p, so the diffusion centrality of vertex
v is (sump − F [p][v]) − sum′p. If p 6∈ VL(v′), the negative summand has been
computed already in lines 2–4. In this case, the diffusion centrality of vertex v is
sum′p − (sump − F [p][v]).

Proposition 6. The worst-case time complexity of Algorithm HyperDC is O(|V | ·
(|N |+ 1

α ·|H|·(log |H|+Umax·(Smax+log |H|)))), whereUmax = maxv∈V {|{h | h ∈
H ∧v ∈ S(h)}|}, Smax = maxh∈H{|S(h)|}, and α is defined as in Proposition 5.

A brief note is in order about how the techniques in this section yield better
scalability. Compared to our past work [31], HyperDC is approximately 100 times
faster (this is the average speedup obtained in our experimental evaluation). In
particular, the U and Heapinit structures used in HyperDC are built just once.
This yields a speedup of approximately 5x. In addition, the filtering based on
Proposition 3 yields a further speedup of 20x, leading to a total speedup of 100x.
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Algorithm 2 HyperDC
Input: An SN S = (V,E,VL, ω), a GAP Π,

a property p, the diffusion hypergraph
D = H(S,Π, p) = 〈N,H,W 〉

Output: {〈v, dc(v)〉 | v ∈ V }
1: 〈Min, U,Heapin〉 ← Init(S, IΠ,p,D);
2: Heap ← copy of Heapin;
3: F ← HyperLFP(U,Min,Heap,D) ;
4: sump ←

∑
v∈V F [p][v];

5: Result← ∅;
6: for each v ∈ V do
7: Heap ← copy of Heapin;
8: if p ∈ VL(v) then
9: Min[p][v]← 0;

10: else
11: Min[p][v]← 1;
12: for each h ∈ U [p][v] do
13: remove 〈h,w〉 from Heap;
14: Let p′(v′) = t(h);
15: if W (h,Min) > Min[p′][v′] then
16: Add 〈h,W (h,Min)〉 to Heap;
17: M ← HyperLFP(U,Min,Heap,D);
18: sum′p ←

∑
v′∈V,v′ 6=vM [p][v′];

19: if p ∈ VL(v) then
20: dc(v)← (sump − F [p][v])− sum′p;
21: Min[p][v]← 1;
22: else
23: dc(v)← sum′p − (sump − F [p][v]);
24: Min[p][v]← 0;
25: Add 〈v, dc(v)〉 to Result;
26: return Result;

Algorithm 3 Init
Input: A social network S = (V,E,VL, ω),

a p-interfered predicate set IΠ,p,
a diffusion hypergraphH = 〈N,H,W 〉.

Output: M [1..|IΠ,p|][1..|V |],
U [1..|IΠ,p|][1..|V |], Heap

1: n = |IΠ,p|; m = |V |;
2: M [1..n][1..m]; U [1..n][1..m];
3: Heap ← ∅;
4: for each v ∈ V , q ∈ IΠ,p do
5: M [q][v]← 0, U [q][v]← ∅;
6: for each v ∈ V , q ∈ VL(v) ∩ IΠ,p do
7: M [q][v]← 1;
8: for each h ∈ H do
9: Add 〈h,W (h,M)〉 to Heap;

10: for each q(v) ∈ S(h) do
11: U [q][v]← U [q][v] ∪ {h};
12: return 〈M,U,Heap〉;

6. CBAF Algorithm for Approximating kDCP

The goal of this section is to develop our Coarsened Back and Forth (CBAF)
algorithm to approximately compute the top-k diffusion centrality vertices in huge
social networks where it is not feasible to compute DC for all vertices. The basic
idea is to coarsen the original social network S into a smaller network S ′ which
tries to preserve the “diffusive behavior” of S. The top-k vertices are then com-
puted over S ′ and the solution is mapped back to a subgraph of S on which we
again compute the top-k vertices. Given a social network S, a GAP Π, and a prop-
erty p, CBAF performs the following steps: (1) Compute the filtering S ′ of S; (2)
Coarsen S ′ by merging its vertices so as to obtain a new social network SC and
a mapping from the vertices of S ′ to the vertices of SC ; (3) Compute a set TC of
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top-k vertices of SC ; (4) Use TC to compute an approximate set of top-k vertices
of S. The first step has already been described in Section 5.1, while the other steps
will be detailed in the rest of this section.

6.1. Social Network Coarsening
This section proposes a new semantical coarsening technique that reduces net-

work size by merging together vertices that are similar, while trying to preserve the
structural and semantic properties of the network w.r.t. a property p. The coarsen-
ing process involves the following issues: (i) how to select “similar” vertices to be
merged together, (ii) how to assign properties to a merged vertex and to its edges
after merging, and (iii) how to compute edge weights between merged vertices.
These issues are addressed in the following.

Vertex Similarity. CBAF can work with any function to determine whether
two vertices are similar. Throughout this paper, we assume that given any vertex
v, there is a set SIM (v) ⊆ V of vertices that are similar to it. Function SIM
can obviously be defined in many ways. We provide one such way that takes the
diffusion model for p into account (as well as the social network structure).

Consider an SN S, a GAP Π, and a property p. Given two vertices u and v of S,
we write u ∼ v iff u and v activate the same set of rules of Π (cf. Definition 2 for the
the notion of “activation”). Using this equivalence relation, we define SIM Π(v) =
{u ∈ V | u ∼ v}. Obviously, many other definitions are also possible, but this is
the one used in our experiments.

Vertex Merging. We now define how to merge similar vertices. When a set of
vertices is merged into a new vertex v, we have to specify vertex properties of v,
as well as associated edge properties/weights.

Definition 9 (Vertex properties merging). Let S be an SN and {v1, . . . , vn} be a
subset of the vertices of S (to be merged). For each p ∈ VP, let gp : {0, 1}n →
{0, 1} be any associative and commutative function. Then, we define:

mergeVP({v1, . . . , vn},VL) = {p ∈ VP | gp(ϑ(v1, p), . . . , ϑ(vn, p)) = 1}

where ϑ(vi, p) = 1 if p ∈ VL(vi), otherwise ϑ(vi, p) = 0.

The above definition assumes the existence of a function gp that takes the values
(0 or 1) of the p-property of the vertices being merged and combines them into a
single 0 or 1 value denoting whether the merged vertex has property p or not.

Some examples for the function gp can be computing the property intersection
or union (i.e., taking the minimum or maximum value across the xi’s). We can also
use a “majority” function where the new vertex has the property p if the majority
of the vertices being merged have the property p.
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We now address the problem of assigning edges to the new merged vertex. Let
S = (V,E,VL, ω) be an SN and V ′ = {v1, . . . , vn} be a subset of V to be merged
into a new vertex v′. For each edge (v, u, ep) ∈ E such that either v ∈ V ′ and
u ∈ V \ V ′ or u ∈ V ′ and v ∈ V \ V ′, the new vertex v′ will have the outgoing
edge (v′, u, ep) if v ∈ V ′, or the incoming edge (v, v′, ep) if u ∈ V ′.

Edge weighting. We now define how to assign a weight to an arbitrary set of
edges (having the same label) in S = (V,E,VL, ω).

Definition 10 (Edge weighting). Let S = (V,E,VL, ω) be an SN and ep ∈ EP.
Moreover, let {e1, . . . , em} ⊆ (V ×V ×{ep}) be an arbitrary set of edges between
vertices in V labeled with ep, and gep : (0, 1]m → (0, 1] be any associative and
commutative function. Then, we define

weight({e1, . . . , em}) = gep(ω
∗(e1), . . . , ω∗(em))

where ω∗(e) = ω(e) if e ∈ E, otherwise ω∗(e) = 0.

Given two sets of vertices V ′ and V ′′ and an edge property ep ∈ EP, we define
the set possEdges(V ′, V ′′, ep) as the set of all possible edges having property ep
that can exist from vertices in V ′ to vertices in V ′′, i.e. possEdges(V ′, V ′′, ep) =
{(v′, v′′, ep) | v′ ∈ V ′ ∧ v′′ ∈ V ′′}. Finally, if v′ is a new vertex obtained by merg-
ing a set V ′ of vertices and e′ = (v, v′, ep) is a new incoming edge, then its weight
is computed as weight(possEdges({v}, V ′, ep)), while, if e′′ = (v′, v, ep) is a
new outgoing edge, then its weight is computed asweight(possEdges(V ′, {v}, ep)).

Social Network Coarsening. We are now ready to give the definition of social
network coarsening.

Definition 11 (Social network coarsening). Let S = (V,E,VL, ω) be an SN and
θ be a real number in (0, 1] called the contraction factor. A coarsening of S is an
SN S ′ = (V ′, E′,VL′, ω′) together with an onto mapping π : V → V ′ s.t.:

• |V ′| ≤ θ · |V |;

• E′ = {〈π(v1), π(v2), ep〉 | 〈v1, v2, ep〉 ∈ E ∧ π(v1) 6= π(v2)};

• VL′(v′) = mergeVP({v ∈ V | π(v) = v′},VL), for v′ ∈ V ′;

• ω′(e′)=weight(possEdges(π−1(v1), π−1(v2), ep)), for e′=〈v1, v2, ep〉∈E′.

Coarsening an SN S yields a new SN S ′ together with a mapping π from the
vertices of S to the vertices of S ′ such that (i) the number of vertices of S ′ is smaller
than that of S by a factor θ; (ii) if there was an edge between two vertices u and v
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in S, and u has been merged into a new vertex u′ in S ′ while v has been merged
into a new vertex v′ 6= u′ in S ′, then there is an edge between u′ and v′ in S ′;
(iii) the vertex properties of each merged vertex of S ′ are assigned using function
mergeVP ; and (iv) the weights of the edges of S ′ are assigned by functionweight.
In the following, given v′ ∈ V ′, we denote by π−1(v′) the set {v ∈ V | π(v) = v′}.

Algorithm 4 is a general algorithm for coarsening a social network. It starts
by initializing the mapping function π as the identity function. In each iteration, a
vertex v in the current SN is randomly selected, and the set of vertices to be merged
with it is computed by the function getMergingSet . This function computes the
set U ′ of all v’s neighbors that are similar to v according to the similarity function
SIM received as input, and returns a subset M of U ′ whose size is a percentage ρ

Algorithm 4 CoarsenSN
Input: A social network S = (V,E,VL, ω), a GAP Π, a contraction factor θ ∈ (0, 1],

a similarity function SIM , a neighbors threshold ρ ∈ (0, 1],
a vertex properties merging function mergeVP , and an edge weight function.

Output: A coarsening S ′ = (V ′, E′,VL′, ω′) and π : V → V ′ of S.
1: S ′ = (V ′, E′,VL′, ω′) = (V,E,VL, ω);
2: π(v)← v for all v ∈ V ;
3: R← V ′, cont← true;
4: while ((|V ′| > θ · |V |) ∧ cont) do
5: Randomly select a vertex v ∈ R;
6: M ← getMergingSet(v,S ′,Π,SIM , ρ);
7: R← R \ (M ∪ {v});
8: if (M 6= ∅) then
9: VL′(v)← mergeVP({v} ∪M,VL′);

10: π(v′)← v for all v′ ∈ π−1(v);
11: π(v′)← v for all v′ ∈M ;
12: V ′ ← V ′ \M ;
13: 〈E′, ω′〉 ← UpdateEdges(E′, ω′, v,M,weight, π);
14: if (R = ∅) then
15: cont← false;
16: return 〈S ′, π〉;

17: getMergingSet(v,S ′,Π,SIM , ρ)
18: U = all neighbors of vertex v in S ′;
19: U ′ = U ∩ SIM (v);
20: Randomly select a set M ⊆ U ′ of size |M | = ρ · |U ′| ;
21: return M ;

22: updateEdges(E′, ω, v,M,weight, π)
23: E′′ = {〈π(v1), π(v2), ep〉 | 〈v1, v2, ep〉 ∈ E′ ∧ π(v1) 6= π(v2)};
24: for each e′ = 〈π(v1), π(v2), ep〉 ∈ E′′ do
25: ω′(e′)← weight(possEdges(π−1(v1), π−1(v2), ep)) ;
26: return 〈E′′, ω′〉;
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of |U ′|. If the set of vertices M is not empty, vertex v is merged with M , otherwise
a new vertex v is randomly selected. If v is merged with M , the new vertex prop-
erties of v are computed using the mergeVP function, the mapping π is updated,
and the set of edges is updated by the function UpdateEdges . This function first
computes the new set of edges so that if there was an edge between a vertex in
M ∪ {v} and another vertex u, now there is an edge between v and u, while the
new edge weight is computed by using the function weight received in input. The
algorithm’s iterations stop when either the number |V ′| of vertices in the current
SN is less than or equal to θ · |V ′|, where θ is the contraction factor establishing
the desired size of the coarsened network, or it is not possible to merge any other
vertex. Algorithm 4 can be used with our similarity function SIM Π.

6.2. Adapting the DC Definition to the Coarsened Network
We now adapt diffusion centrality to the case of coarsened networks. This

intermediate step will later be used in the computation of diffusion centrality for
vertices of the original network. When a set of vertices M in the original network
S is merged into a single vertex v′ in the coarsened one, v′ represents the network
Sv′ consisting of all vertices in M and all edges among them from the original
network. Thus, even if two vertices v′ and v′′ have the same diffusion centrality
on the coarsened network, the actual diffusion of the property of interest in the
original network among the vertices belonging to Sv′ and Sv′′ may be different and
depends on the properties of the two subnetworks Sv′ and Sv′′ (number of vertices,
edges, etc.). To take this into account, we assign a weight to each vertex v′ in the
coarsened network representing the importance of v′ w.r.t. to the original network.

Definition 12 (Diffusion centrality on a coarsened network). Let S be a social
network, SC = (VC , EC ,VLC , ωC) be a coarsening of S with vertex mapping π,
andmvw be a function assigning a weight to each vertex in VC . Then, the diffusion
centrality of a vertex v in the coarsened SN is defined as

dc′Π,p,SC (v) = Σv′∈VC\{v}
(
mvw(v′) · lfp(Π ∪ΠSC⊕p(v))(p(v

′))
)
−

Σv′′∈VC\{v}
(
mvw(v′′) · lfp(Π ∪ΠSC	p(v))(p(v

′′))
)

Function mvw, which we call merged vertex weight function, can be defined
in several ways. Below we provide three alternative definitions. Consider an SN
S = (V,E,VL, ω), and let SC and π be a coarsening of S. Given a vertex v of SC ,

• mvw0(v) = 1. In this case, the original definition of DC is used.

• mvw1(v) = |Vv| × |Ev |
|Vv |2−|Vv | = |Ev |

|Vv |−1 ,
where Vv = π−1(v) and Ev = {〈v1, v2, ep〉 | v1, v2 ∈ Vv ∧ 〈v1, v2, ep〉 ∈
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E}. Thus, the weight of v is given by the number of vertices in the original
SN that were merged into v multiplied by the density of Sv. The idea is that
if Sv has high density and many vertices, the weight of v should be high.

• mvw2(v) = ln(mvw1(v)) + 1. Here, we consider the fact that the diffusion
of the property p can rapidly decrease according to the distance of vertices
in Vv from the diffusion source vertex v.

6.3. CBAF: Approximately Solving the kDCP Problem

In this section, we show how to approximately compute the top-k diffusion
centrality vertices in a social network. First, we introduce some definitions.

Definition 13 (Induced social network). Given an SN S = (V,E,VL, ω), the SN
induced from S by a set of vertices VI ⊆ V is SI = (VI , EI ,VLI , ωI), where
EI = {〈v1, v2, ep〉 | 〈v1, v2, ep〉 ∈ E ∧ v1, v2 ∈ VI}, VLI(v) = VL(v) for all
v ∈ VI , and ωI(e) = ω(e) for all e ∈ EI .

Given an SN S = (V,E,VL, ω), a set of vertices T ⊆ V , and a positive
integer d, we denote by nbrs(T, d,S) the set of the neighbors of the vertices in T
at a distance no greater than d. If d = 0, then nbrs(T, d,S) = ∅.

We are now ready to present our CBAF algorithm shown in Algorithm 5.
CBAF takes as input a social network S, a GAP Π, a property p, an integer k,
and a set of options opts as described in Table 2. It returns an (approximate) set
of top-k diffusion centrality vertices over S . The first step of the algorithm filters
out the original SN S by removing all unnecessary vertices, obtaining the network
S ′ (line 1). Then S ′ is coarsened into a smaller social network SC (line 2), and the
exact set TC of top-k vertices over SC is computed (line 3) by running HyperDC
to find the diffusion centrality of all vertices in S ′ and choosing the top-k. At this
point the set TC is extended with its neighbors in SC at a distance no greater than
dC , in order to limit the bias of the vertices in TC in the following computation
(line 4). Next, the above set of vertices is mapped back to the vertices of the orig-
inal SN S and is extended with its neighbors on S at a distance no greater than
dI obtaining the set of vertices VI (line 5)—with a slight abuse of notation, we
use π−1(TC) to denote ∪v∈TC π−1(v). After that, the social network SI induced
from the vertices in VI on S is computed (line 6), and the algorithm returns the
approximate set of top-k vertices over S as the exact set of top-k diffusion central-
ity vertices computed over SI (line 7). Note that CBAF first evaluates diffusion
centrality of all vertices in the coarsened network SC (which is typically small)
and then diffusion centrality of all vertices in a subgraph of the original network
corresponding to the neighborhood of vertices associated with the solution found
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Algorithm 5 CBAF (Approximate Top-k)
Input: An SN S = (V,E,VL, ω), a GAP Π, a property p, an integer k,

a set of options opts as described in Table 2.
Output: An approximate set of top-k vertices.
1: S ′ = (V ′, E′,VL′, ω′)← networkF iltering(S,Π, p)
2: 〈SC = (VC , EC ,VLC , ωC), π〉 ← CoarsenSN(S ′,Π, opts)
3: TC ← computeTopK(SC , k,mvw) % Use HyperDC
4: TC = TC ∪ nbrs(TC , dC ,SC)
5: VI = π−1(TC) ∪ nbrs(π−1(TC), dI ,S)
6: SI = (VI , EI ,VLI , ωI)← SN induced from S by the vertices in VI
7: return computeTopK(SI , k,mvw0)

θ ∈ (0, 1] contraction factor mvw merged vertex weight function
SIM similarity function dC neighbors distance for extending
ρ ∈ (0, 1] neighbors threshold the set TC
mergeVP vertex properties merging function dI neighbors distance for extending
weight edge weight function the set π−1(TC)

Table 2: Input options opts for Algoritm 5.

in line 3 of the CBAF algorithm. This is typically a small fraction of the vertices
in the original social network S.

7. Experimental Evaluation

This section contains a detailed report on our experiments.
1) Exact Computation with HyperDC. We compared the runtime and spread

generated by diffusion centrality against classical centrality measures (Section 7.2),
using networks with up to around 265K vertices and 440K edges.

2) Approximate Computation with CBAF. We tested scalability, runtime, and
spread of CBAF with networks of up to 2M vertices and 20M edges (Section 7.3).

3) Comparing spread of memes by high DC vertices against low DC vertices.
In order to test whether diffusion centrality captured real spread, we ran a test
with MemeTracker data where we knew who had initiated a meme. We tested the
hypothesis that vertices with high centrality would be more influential than those
with low centrality according to diffusion centrality as well as classical centrality
measures. Kolmogorov-Smirnov tests validate both findings: (i) high DC vertices
diffuse memes better than low DC vertices, and (ii) diffusion centrality does a
better job explaining real meme diffusion than classical centrality measures.

We implemented HyperLFP (Algorithm 1), HyperDC (Algorithm 2), and CBAF
(Algorithm 5) in Java. To compute degree, eigenvector, PageRank, closeness,
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and betweenness centrality we used the Java Universal Network/Graph Framework
(JUNG)3. All experiments were run on an Intel Xeon @ 2.40 GHz, 24 GB RAM.

7.1. Experimental Setup
Social Networks. Our experiments used several real-world social networks sum-
marized in Table 3. The networks are taken from the Stanford Large Network
Dataset Collection [38]. We also considered an additional online game dataset
called STEAM [6], which contains friendship relations (represented as directed
edges) between players (vertices). Each player has several vertex properties and
we selected country, group(s), games played, and total time played per game. We
extracted 10 subnetworks from the whole STEAM dataset by choosing different
games and selecting, for each game, all players who played and all edges between
the players. The features of the extracted networks are reported in Table 4.

Network Description Type # Vertices # Edges Avg. Degree Density
BlogCatalog friendship undirected 10,312 333,983 64.78 6.28E-03
e-mail Enron e-mail communications undirected 36,692 183,831 10.02 2.73E-04

Douban friendship undirected 154,907 654,188 8.45 5.45E-05
wiki-Vote Wikipedia vote relationships directed 7,115 103,689 14.57 2.05E-03

soc-Epinions Trust relationships directed 75,879 508,837 6.71 8.84E-05
email-EuAll e-mail communications directed 265,214 420,045 1.58 5.97E-06

Table 3: Non-Game Social Networks used in the experiments.

Social Network # Vertices # Edges Avg. Degree Density
GAME8690 4,083 21,447 5.25 1.29E-03
GAME50510 28,872 115,254 3.99 1.38E-04
GAME6850 52,879 164,702 3.11 5.89E-05
GAME1500 66,571 303,240 4.56 6.84E-05
GAME24420 82,377 437,554 5.31 6.45E-05
GAME11450 89,942 327,258 3.64 4.05E-05
GAME17300 122,467 441,657 3.61 2.94E-05

GAME420 1,307,335 12,431,564 9.51 7.27E-06
GAME220 2,030,579 20,596,331 10.14 5.00E-06

Table 4: STEAM networks used in the experiments.

Diffusion Models. We ran experiments with a conditional probability model (here-
after referred to as the “Flickr model” [13]), the Jackson-Yariv tipping model [28],
and the SIR model of disease spread [2]. We generalized these diffusion models
by adding an additional condition q(u) : µ in rule bodies. When all vertices have
the property q, then we have the original diffusion models. The q-condition de-
termines when the diffusion process can happen. More specifically, for the Flickr

3jung.sourceforge.net
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model, only vertices satisfying property q can spread the diffusive property, while
for the Jackson-Yariv and SIR models, only vertices satisfying property q can get
the diffusive property. In the Flickr model, q is used to represent the “willingness”
of a person to share her/his information (and thus influence other people). In the
Jackson-Yariv and SIR models, q is used to represent a precondition for a vertex to
adopt a behavior or get a disease. Thus, property q is useful when expressing the
fact that only some vertices with some characteristics (modeled by q) can infect or
be infected by the diffusive property. Note that edges originating from nodes that
do not have property q can still play a role in the diffusion depending on the dif-
fusion model. In our experiments, we compared DC with other classical centrality
measures by varying the percentage of vertices in the network with property q. The
diffusion models are reported in Appendix A.

7.2. Diffusion Centrality vs. Classical Centrality Measures
As described earlier, the Flickr, Jackson-Yariv, and SIR models assume that

some set of vertices in the network have property p and that only vertices satisfying
some property q can spread (in the case of the Flickr model) or receive (in the case
of Jackson-Yariv and SIR models) p. For STEAM data, we were able to use known
properties of the vertices for q but we were not able to do this for the other datasets.

Before getting into the details of our experimental evaluation, we summarize
the high level conclusion of these comparative experiments (experiments on scal-
ability using the CBAF algorithm are in the next subsection): (i) the runtime of
HyperDC is better than betweenness and closeness centrality and comparable with
the others, and (ii) the spread achieved by diffusion centrality is almost always
better than those achieved by classical centrality measures.

7.2.1. STEAM Data
We used all but the last two (very large) STEAM data sets (Table 4) for the

comparative analysis as some classical centrality measures could not finish the
computation even on the first seven STEAM data sets. Consistent with the data, we
set the percentage δp of vertices that initially have property p to 0% and varied the
percentage δq of vertices having property q by using real properties of vertices in
the STEAM data. In the STEAM data, q was taken to be the playing time of users
in the game and was assigned as follows: we sorted the players in descending
order according to playing time and assigned q to the first δq users. We varied
δq ∈ {1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%}. The last two STEAM
subnetworks, which are substantially larger, were used for the evaluation of the
CBAF algorithm (cf. Section 7.3).
Runtime. We compared the time to compute DC w.r.t. the three diffusion models
against the time to compute classical centrality measures. Figure 3 shows how the
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Figure 3: STEAM Data: Runtimes (ms) averaged per vertex when δq ∈
{1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%}.

runtimes vary w.r.t. δq for two representative STEAM games.
Of the 7 STEAM games we tested in this experiment, closeness centrality com-

putation finished only in the smallest case (GAME8690). HyperDC is much faster
than betweenness and closeness centrality for all the STEAM networks and for all
values of δq. Even when δq = 30%, the runtime of HyperDC is still low.

HyperDC is faster than PageRank over networks GAME8690 and GAME50510
(the two smallest STEAM networks) for the Flickr and Jackson-Yariv models, and
also faster than degree over network GAME50510 when δq is low.4 However,
when the number of vertices increases (i.e., for the STEAM datasets other than
GAME8690 and GAME50510), HyperDC becomes slower than PageRank and
degree for all three diffusion models. For instance, in GAME1500, a crossover
occurs when δq = 3% for the SIR model but not for the Jackson-Yariv model.
There are two main reasons for that: (i) the size of IΠ,p is larger for the SIR model
(recall that the smaller IΠ,p is, the more effective the optimization of Proposition 3
will be), and (ii) the SIR model is neither p-monotonic nor p-dwindling (and thus
optimizations are less effective, cf. Section 5.1).
Runtime of HyperDC Tends to be Linear. We note from Proposition 6 that in
the worst case, the complexity of HyperDC is nonlinear. In order to assess actual
runtime characteristics of HyperDC, we ran an experiment on the STEAM data
when the number of vertices increases and as δq varies. We used the networks

4Though it may seem surprising that HyperDC sometimes beats degree centrality, the reason for
this is that when δq is low (below 3%), HyperDC only needs to compute diffusion centrality for a
small number of vertices. However, when δq is larger, this is not the case.
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Figure 4: STEAM Data: Average Runtime (per vertex) of HyperDC as the number of vertices is
increased and for different δq using Flickr, Jackson-Yariv, and SIR models.

from GAME 50510, 6850, 11450, and 17300 which all have a similar average
degree (in the 3-4 range). Figure 4 shows the number of vertices in the network on
the x-axis and the average runtime per vertex on the y-axis. Different curves show
varying values of δq in the range 5-30%. We see that irrespective of the diffusion
model used and the value of δq, HyperDC runs in linear time in practice.

Higher values of δq lead to higher running times, because when more vertices
have property q, diffusion unfolds more and thus HyperDC takes more time to
converge to the least fixed point. In several real scenarios, information spreading
is limited to individuals who are within close proximity (e.g., see [13]).
Spread. We now compare the diffusion of property p when we choose the top-
k central vertices according to DC vs. using classical centrality measures on the
STEAM data. In each case, the top-k vertices are called seeds. We vary k from 10
to 100 in steps of 10. The spread w.r.t. a given set of seeds is the expected number
of vertices with property p (after diffusion) assuming the seeds have property pmi-
nus the expected number of vertices with property p (after diffusion) in the original
social network. This difference is normalized. By the expected number of vertices
with property p for an SN S after diffusion of Π we mean

∑
v∈V lfp(Π∪ΠS)(p(v)),

where V is the set of vertices of S . Our spread experiments are presented in two
ways. In the first, we show how spread varies by averaging over the number of
seeds for fixed δq values. In the second, we do the opposite.
Spread Experiments Averaged over Varying k values for specific δq values. We var-
ied δq over the set {1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%}. For each
selection of δq, we considered every value of k from the set {10, 20, . . . , 100}.
Then for a fixed δq, k,Diffusion-Model triple, we computed the ratio of the spread
using DC to the best spread achieved by any of the classical centrality measures.
Table 5 reports the average of these ratios. Thus, any ratio greater than 1 shows
that DC achieves a higher spread than all of the classical centrality measures.

For the Flickr and Jackson-Yariv models, DC always achieved a better spread
than all classical centrality measures. For the SIR model, on average, DC achieves
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Table 5: Spread over STEAM networks for different δq values.

STEAM Data: Average ratio of the spread generated by diffusion centrality
to the best spread generated by any of the classical centrality measures for different δq .

Model Network 1% 2% 3% 4% 5% 10% 15% 20% 25% 30%

FKModel GAME8690 19.4 2.4 2.0 1.8 1.9 1.9 1.6 1.5 1.4 1.3
GAME50510 18.1 22.5 23.8 26.5 19.5 5.0 3.6 3.0 2.7 2.4
GAME6850 436.6 654.2 11.6 10.4 10.7 8.1 6.4 5.6 4.1 3.2
GAME1500 677.6 89.9 48.3 49.9 46.6 48.8 50.0 56.2 55.5 3.1
GAME24420 125.6 6.5 6.1 6.3 5.7 4.9 3.1 2.3 1.9 1.7
GAME11450 512.0 585.5 804.3 8.9 9.7 6.9 5.5 5.1 4.9 3.7
GAME17300 288.7 363.5 6.6 6.7 6.8 5.4 5.1 4.4 3.7 2.8
Average 296.9 246.4 129.0 15.8 14.4 11.6 10.8 11.2 10.6 2.6

JYModel GAME8690 2.8 1.7 1.4 1.2 1.3 1.2 1.1 1.1 1.1 1.2
GAME50510 11.0 5.0 5.1 4.3 4.0 2.7 1.9 1.5 1.1 1.0
GAME6850 8.1 5.8 4.9 4.5 3.6 2.5 2.1 1.8 1.7 1.6
GAME1500 8.8 6.7 4.6 3.7 3.6 2.3 2.0 1.9 1.7 0.9
GAME24420 5.4 3.3 2.8 2.6 2.2 1.6 1.4 1.3 1.3 1.3
GAME11450 10.9 7.7 6.2 5.1 4.2 2.9 2.2 1.9 1.7 1.6
GAME17300 9.0 4.5 2.4 2.2 2.2 1.6 1.2 1.2 1.2 1.2
Average 8.0 5.0 3.9 3.4 3.0 2.1 1.7 1.5 1.4 1.3

SIRModel GAME8690 1.2 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.8 0.8
GAME50510 10.1 2.6 3.0 2.2 2.2 1.4 1.1 1.0 0.9 0.9
GAME6850 4.9 3.6 2.8 2.6 2.5 1.8 1.7 1.4 1.3 1.2
GAME1500 5.7 3.3 2.2 2.4 2.1 1.7 1.2 1.1 1.0 0.8
GAME24420 2.0 1.4 1.5 1.5 1.4 1.1 0.8 0.8 0.8 0.8
GAME11450 6.7 4.4 2.7 1.7 1.8 1.4 1.1 1.1 1.0 0.9
GAME17300 4.3 2.1 1.0 1.1 1.2 0.7 0.6 0.6 0.6 0.6
Average 5.0 2.6 2.0 1.8 1.7 1.3 1.1 1.0 0.9 0.9

better spreads than classical centrality measures as long as δq ≤ 15% — at 20%,
they are even, and at 25-30%, classical centrality measures achieve a better spread.

Not surprisingly, this spread ratio decreases as δq increases because when δq is
large, more vertices get infected regardless of how the seeds were chosen and thus
the difference between DC and other centrality measures decreases.

Interestingly, spread ratios for the Flickr model are very large compared to
those for the Jackson-Yariv and SIR models. This is because the expected number
of vertices which have property p after diffusion is much higher in the case of the
Flickr model than in the other two cases.
Spread Experiments Averaged over Varying δq values for specific k values. Here
we selected values of k as before and averaged over different possible values of δq
drawn from the set {1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%}. Table 6
summarizes the results. As in the previous case, a ratio exceeding 1 implies that
DC outperforms all classical centrality measures. On average, for all values of k
and for all three diffusion models, DC achieves a better spread than all the classical
centrality measures, with only a few exceptions in the SIR model.

Interestingly, the spread ratio for GAME8690 is consistently the lowest accord-
ing to each of three diffusion models and in each setting of both Tables 5 and 6.
This game has just 4083 vertices (so it is very small and dense). Our choice of q
is based on the amount of playing time of a player and there is strong correlation
between that and the number of friends. As a consequence, having multiple seeds
does not greatly increase diffusion of property p because of overlaps between the
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Table 6: STEAM Data: Average ratio of the spread generated by diffusion centrality to the best
spread generated by any of the classical centrality measures for different k values.

Average ratio of the DC spread to the best spread of other centrality measures for different k values.
Model Network 10 20 30 40 50 60 70 80 90 100

FlickrModel GAME8690 16.5 2.1 2.2 2.1 2.1 2.0 2.0 2.1 2.1 2.1
GAME50510 48.1 6.8 9.0 10.5 7.7 8.6 9.2 9.8 10.3 7.2
GAME6850 41.4 67.3 86.1 101.2 114.9 127.9 138.5 149.6 157.8 166.2
GAME1500 364.0 94.3 58.4 67.8 74.2 81.0 88.3 93.5 99.9 104.7
GAME24420 48.2 72.2 4.4 5.2 5.5 5.7 5.5 5.7 6.0 5.7
GAME11450 70.9 116.4 155.1 187.7 216.8 241.5 265.2 287.8 310.0 95.3
GAME17300 63.3 101.0 134.8 164.0 187.8 8.0 8.0 8.5 8.9 9.4
Average 93.2 65.7 64.3 76.9 87.0 67.8 73.8 79.6 85.0 55.8

JYModel GAME8690 1.9 1.5 1.3 1.2 1.3 1.4 1.4 1.4 1.4 1.4
GAME50510 3.3 3.6 3.9 3.7 4.1 3.7 3.9 4.0 3.7 3.8
GAME6850 2.6 3.3 3.7 3.7 3.8 3.5 3.8 4.0 4.2 4.0
GAME1500 3.1 3.3 3.9 3.9 4.0 3.7 3.7 3.6 3.5 3.5
GAME24420 2.2 2.2 2.2 2.3 2.4 2.4 2.5 2.4 2.4 2.3
GAME11450 3.0 4.3 4.7 4.5 4.7 4.5 4.6 4.8 4.8 4.6
GAME17300 2.1 1.9 2.5 2.8 2.8 2.8 3.0 3.0 2.9 3.0
Average 2.6 2.9 3.2 3.2 3.3 3.1 3.3 3.3 3.3 3.2

SIRModel GAME8690 1.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9
GAME50510 2.1 2.0 2.4 2.4 2.8 2.5 2.7 3.0 2.7 2.7
GAME6850 2.2 2.4 2.5 2.4 2.4 2.2 2.3 2.5 2.5 2.4
GAME1500 2.5 2.4 2.6 2.2 2.2 2.1 2.1 1.9 1.8 1.8
GAME24420 1.4 1.4 1.4 1.3 1.3 1.1 1.1 1.1 1.0 1.0
GAME11450 2.1 2.8 2.4 2.3 2.2 2.2 2.1 2.2 2.2 2.2
GAME17300 1.3 1.2 1.3 1.4 1.3 1.2 1.3 1.3 1.3 1.4
Average 1.8 1.9 1.9 1.8 1.9 1.7 1.8 1.8 1.8 1.8

vertices that may be influenced by the seeds.

7.2.2. Non-Game Social Network Data
In this section, we perform experiments similar to those reported above on the

networks in Table 3. For these networks, the data did not have associated vertex
properties. We looked at two cases.
Case 1. We randomly selected δp = 0.1% of the vertices to have a synthetic prop-
erty p (in 5 runs). In each run, we varied δq ∈ {1%, 2%, 3%, 4%, 5%, 10%, 15%,
20%, 25%, 30%} and selected δq% of the vertices to have a synthetic property q.
Case 2. We randomly selected δq = 3% of the vertices and varied δp ∈ {0.1%, 0.2%,
0.3%, 0.4%, 0.5%}, associating synthetic properties p and q with vertices as above.

Recall that, as mentioned before, vertices that do not have the q-property can
still play a role in spreading p depending on the diffusion model.5

Runtime. Case 1. Figure 5 shows how runtime varies w.r.t. δq for Case 1 above.
The networks are sorted from left to right according to the number of vertices, with

5For instance, consider an SN with vertices v1, v2, v3, v4, and edges (v1, v2), (v2, v3), (v3, v4),
where only v4 has property q. Consider a diffusion model saying that if X has property p, X is
connected with Y , Y is connected with Z, and Z is connected to W , then if W has property q he
gets property p. If, for instance, v1 has property p, then v4 gets p too. Notice that each of the four
vertices and their connections play a role in that. So, if for instance we delete v2 and the edge (v2, v3)
(e.g., just because v2 does not have property q), we lose the real behavior discussed above.

33



●

Centrality

DC−FK DC−JY DC−SIR PageRank Eigenvector Closeness Betweenness Degree

0 5 10 15 20 25 30

0
10

20
30

40
50

l_dc_time_FK[,1]

l_
dc

_t
im

e_
F

K
[,2

]

wiki−Vote

● ● ● ● ● ● ●

● ●

●

0 5 10 15 20 25 30

0
10

0
20

0
30

0
40

0

l_dc_time_FK[,1]

l_
dc

_t
im

e_
F

K
[,2

]

soc−Epinions

● ● ● ● ●
●

●

●

●

●

0 5 10 15 20 25 30

0
50

10
0

15
0

20
0

25
0

30
0

l_dc_time_FK[,1]

l_
dc

_t
im

e_
F

K
[,2

]

email−EuAll

● ● ● ● ●

●

●

●

●

●

0 5 10 15 20 25 30

0
10

00
20

00
30

00

l_dc_time_FK[,1]

l_
dc

_t
im

e_
F

K
[,2

]

BlogCatalog−dataset

● ● ●
● ●

●

●
●

●

0 5 10 15 20 25 30

0
50

0
10

00
15

00
20

00
25

00

l_dc_time_FK[,1]

l_
dc

_t
im

e_
F

K
[,2

]

email−Enron

● ● ● ● ●

●

●

●

●

●

0 5 10 15 20 25 30

0
20

0
40

0
60

0
80

0
10

00

l_dc_time_FK[,1]

l_
dc

_t
im

e_
F

K
[,2

]

Douban−dataset

● ● ● ● ● ●
●

●

●

●

C
om

pu
tin

g 
tim

e 
pe

r 
ve

rt
ex

 (
m

s)

% of vertices having 'q' (For 'p', 0.1% vertices)

Figure 5: Non-Game SNs: Runtime per vertex when varying δq from 1% to 30% and δp = 0.1%.

directed networks in the first row and undirected networks in the second row. As in
the case of our experiments with the STEAM data, closeness and betweenness cen-
trality are time consuming compared to the other algorithms (including HyperDC).

HyperDC with the Flickr model is faster than PageRank in the majority of
cases considered, and sometimes faster than eigenvector centrality. HyperDC with
the SIR model is faster than PageRank for directed networks when δq ≤ 4%. As in
the case of the STEAM data described earlier, this is because the network filtering
step can eliminate many vertices. For the Flickr and SIR models, the runtimes
increase slightly as δq increases because of the higher diffusion that takes place.

However, as in the case of the STEAM data, HyperDC with the Jackson-Yariv
model often takes the most time. By increasing the percentage of vertices having
property q, computing diffusion centrality for the Jackson-Yariv model becomes
slower than for the other diffusion models, because the diffusion process is deter-
mined by the sum of neighbors’ diffusion probability and now we have that 0.1%
of the vertices initially have the property p. Thus, every time that a vertex’s proba-
bility is updated, all of its neighbors who have q are updated in the next step.

Case 2. Figure 6 shows how runtime varies as δp varies. The runtime for close-
ness and betweenness centrality are very high (worse by 1 to 3 orders of magnitude)
and hence we do not report runtimes for them.

HyperDC’s runtime for the Flickr and SIR models do not vary much with δp.
HyperDC with the Flickr model is faster than PageRank in almost all networks and
settings. Compared to degree centrality, HyperDC with Flickr exhibits competi-
tive runtimes, being faster in about half the settings considered and comparable or
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Figure 6: Non-Game SNs: Runtime per vertex when varying δp from 0.1% to 0.5% with δq = 3%.

slightly worse in the others. HyperDC with the SIR model is faster than PageRank
in all data sets except the Douban data set.

As in the case of the STEAM data, HyperDC with the Jackson-Yariv is the
worst performer w.r.t. runtime (excluding betweenness and closeness centrality
which we eliminated earlier due to their high running times) because the compu-
tation of diffusion centrality for the Jackson-Yariv model becomes slower when
many vertices have the diffusion property p.
Spread. In both Cases 1 and 2, on average, experimental results showed that the
ratio of spread generated by HyperDC to the spread generated by the best classical
measure exceeds 1. As in the case of the STEAM data, the best ratios are for the
Flickr model.

7.3. CBAF Algorithm: Performance Experiments

In this section, we describe experiments we performed to compare CBAF with
HyperDC in terms of both runtime and spread. Simply put, these experiments show
that CBAF almost always achieves the same spread as HyperDC with a runtime that
is always lower (with the correct choice of settings) than HyperDC—moreover,
sometimes it takes less than half the runtime of HyperDC.
Input Options for CBAF. There are a number of input options for CBAF that influ-
ence its performance (cf. Table 2). In order to find the best possible input options,
we ran extensive experiments in which we considered the 972 different candidate
option sets determined by the candidate values reported in Table 7. Each option set
was tested 5 times (because of the random component of the algorithm) over the
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Best input options
Option Possible values OP1 OP2 OP3

dC 0,1,2 1 1 1
dI 0,1,2 0 0 0
weight min , max , average max max average
mergeVP union , intersect , majority majority intersect majority
mvw mvw0, mvw1, mvw2 mvw1 mvw1 mvw0

ρ One vertex, 10%, 50%, 100% 100% 100% 100%

Table 7: Candidate and best values of the input options for CBAF

GAME17300 network. Candidate option sets were compared on the basis of their
running time and the quality of their results, measured in terms of spread, recall,
Kendall and Spearman’s rank correlation coefficients. The three option sets that
achieved a good balance between runtime and spread are reported in Table 7—these
were the options we used in our experiments with CBAF. Specifically, dC = 1 and
dI = 0 showed better running times than the other values with little difference in
terms of quality; weight = min was disregarded as its computing time was slightly
better than max and average, while the quality was much worse; running times for
mergeVP = union andmvw = mvw2 were worse than the other values while the
qualities were similar; ρ = 100% showed slightly higher running times, but much
better quality than the other values. In all experiments, we used the vertex similar-
ity function SIM Π defined earlier. The contraction factor θ was chosen from the
set {0.2, 0.3, 0.4}.
CBAF Evaluation Measures. We used two measures to evaluate CBAF. The time
ratio (denoted ratiotime ) is simply the ratio of time taken by CBAF vs. HyperDC.
The spread ratio (denoted ratiospread ) is the ratio of spread according to CBAF
(assuming the top-k vertices have property p) vs. that according to HyperDC.

We compared HyperDC and CBAF over the two largest STEAM networks
(GAME420 with 1.3M vertices and 12.43M edges, and GAME220 with 2.03M
vertices and 20.59M edges) and the 2 largest non-game networks (Email-Eu and
Douban), together with the Flickr, Jackson-Yariv, and SIR models, using the three
best option sets of Table 7. In all the experiments we set δp = 0 and δq = 5%.
For the Email-Eu and Douban networks, we set k = 100 and θ ∈ {0.4, 0.3, 0.2}.
For the two STEAM networks, we ran the experiments with θ = 0.4, and k ∈
{130, 650, 1300} for GAME420 and k ∈ {200, 1000, 2000} for GAME220.
Runtime. Option OP3 is the one that consistently yielded the fastest runtimes for
CBAF and its results are reported in Table 8 (we present the results only for the
network GAME220, which is the largest one, because the results for GAME420
are quite similar to the ones for GAME220). The time ratios are always less than
one in all networks and for all diffusion models with the exception of the Jackson-
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Table 8: Results over the Douban, Email-eu, and GAME220 networks (Option set OP3).

Douban network Email-eu network GAME220 network
Model θ ratiotime ratiospread ratiotime ratiospread k ratiotime ratiospread

Flickr 0.4 0.63 0.96 0.83 0.61 200 0.52 0.99
0.3 0.62 0.97 0.82 0.67 1000 0.45 0.99
0.2 0.64 0.97 0.83 0.62 2000 0.60 0.94

JY 0.4 0.93 0.93 0.52 0.82 200 0.95 0.97
0.3 0.91 0.94 0.55 0.82 1000 0.95 1.00
0.2 0.91 0.94 0.66 0.83 2000 1.04 1.00

SIR 0.4 0.46 0.99 0.72 0.90 200 0.66 0.97
0.3 0.48 0.99 0.76 0.89 1000 0.72 0.98
0.2 0.47 0.99 0.76 0.91 2000 0.64 1.00

Yariv model in the huge network GAME220 with k = 2000. In particular, on
the Douban network with the SIR model the time ratio is less than 50%, while
delivering an almost perfect spread ratio of 0.99. On the Email-Eu network using
the Jackson-Yariv model, it runs in just over 50% of the time taken by HyperDC.
On the huge GAME220 network using the Flickr model it runs in under 60% of the
time taken by HyperDC. CBAF does not work well for the Jackson-Yariv model in
the two huge networks because of the high average degree of these networks.
Spread. In all cases, all three options yield approximately the same spread. In
the huge networks and the Douban network, the spread ratio is always close to one.
On the Email-Eu network, the spreads range from 0.8-0.9 for the Jackson-Yariv and
SIR models. However, for the Flickr model, the spread is lower, mostly in the 0.6-
0.7 range. The reason for this is that the Email-Eu network has a very low average
degree which leads to merged vertices (in the coarsened networks) representing
only small sets of vertices of the original network so that the induced network is
small and not representative enough to compute approximate top-k vertices well.

The performance of CBAF w.r.t. runtime and spread depends on the input
options. In general, we have observed that the more aggressive is the coarsening
step, the faster is the algorithm, but the quality (spread) gets worse. In the step
computing the induced SN, if we add more neighbors the quality gets better, but
running times become higher.

7.4. Testing the quality of DC in MemeTracker data

We also tested the quality of diffusion centrality in the real context of memes
diffusion through the Web. We used the MemeTracker data6 consisting of a set of

6http://www.memetracker.org/data.html
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172M news articles and blog posts from 1M online sources collected from Septem-
ber 1 2008 till August 31 2009. For each article/post the dataset contains times-
tamp, phrases contained in the document and hyper-links. In addition, phrases have
been clustered together and this information is available in the data, too. We con-
sidered all phrases in the same cluster as the same meme. We built a network from
the raw phrase data where vertices are online websites and edges are hyperlinks.
More specifically, we selected as vertices the top 10,000 sites w.r.t. number of hy-
perlinks, and inserted a direct edge (u, v) between two sites u and v if there is a
webpage on site u having a hyperlink to a webpage on site v.

Our aim was to show that diffusion centrality correlates well with the spread
generated by vertices: vertices with high diffusion centrality spread more than ver-
tices with low diffusion centrality. To show that, we restricted our attention to
source vertices, i.e. online websites that firstly showed a meme m, and for each
of them we computed the actual spread (number of websites infected by m). We
assumed that a site u infected a site v with meme m if there is an edge from u to v,
m appeared on u at time t1 and on v at time t2, and t1 < t2. When many webpages
belonging to the same website u are infected by the same meme m, we consider
the smaller webpage timestamp as timestamp for the infection of u. Moreover, our
analysis focused only on the top 5,000 most spread memes.

We assumed that the memes diffusion through the websites is described by
a (cascade) diffusion model for which we estimated the parameters by using the
actual spread of memes (the identification of the actual model for memes diffusion
is out of the scope of this paper).

By using the MemeTracker data and the above diffusion model, we performed
a set of experiments as follows. We do not use a k-fold cross validation since we
have temporal data, but we considered a time window (t1, t2) to determine train-
ing/testing data that we moved in steps of one day, whose size (in days) assumed
values in the set {30, 60, 90}. For each time window, we considered the data whose
timestamp is in the first 80% of the days as a training set to estimate the parameter
of the diffusion model, and the last part as a test set. For each meme m in the test
set we computed the tuple (m, v, c, s), where v is the source of m, c is its central-
ity value (we computed diffusion centrality, PageRank, degree, betweenness and
closeness centrality), and s is the actual spread of m.

Figure 7 (left) shows the distribution of centrality values for DC, PageRank,
closeness, betweenness, and degree centrality as well as the distribution of the
actual spread over all the memes in the dataset and by considering a sliding time
window of size 30 days. The plot in Figure 7 (right) shows the value of the distance
(measured by using the Kolmogorov-Smirnov statistic) between the actual spread
distribution and the distribution of PageRank, closeness, diffusion, betweenness,
and degree centrality. The figure shows that the distribution of DC values is the

38



0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
20

30

Kernel Density

Nomalized infections / Normalized centrality

D
en

si
ty

Actual spread (nomalized)
PageRank
Closeness centrality
Diffusion centrality
Betweenness centrality
Degree Centrality

PageRank Closeness Diffusion Betweenness Degree

Two−sample Kolmogorov–Smirnov test

K
−

S
 s

ta
tis

tic

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 7: (Left) Actual spread and centrality measures’ distributions. (Right) Kolmogorov-Smirnov
statistic between actual spread distribution and centrality measures’ distributions from the left plot.

closest to the one of the actual spread and its distance is the smallest. This result
intuitively suggests that an initiator with a high value of diffusion centrality is
more likely to reach a high value of spread than one with a low value of diffusion
centrality, while this does not hold for the other centrality measures.

7.5. Summary of Experiments

In this section, we conducted three experiments. The first compares HyperDC
with classical centrality measures. The experiment shows that: The runtime of Hy-
perDC is better than betweenness and closeness centralities and comparable with
other centrality measures. The spread achieved by diffusion centrality is almost
always better than those achieved by classical centrality measures.

The second experiment compares HyperDC with CBAF. We show that CBAF
almost always achieves the same spread as HyperDC with a runtime that is always
lower (with the correct choice of settings) than HyperDC.

Recall that in our experimental setup, we considered an initial distribution of
a property q, which models a characteristic that a vertex should have to infect or
be infected by the diffusive property. As also discussed before, running times in-
crease as the percentage δq of vertices having property q increases. This is because
diffusion unfolds more with more vertices having property q, which means that the
time to compute DC increases. Nevertheless, HyperDC showed good performances
with values of δq up to 30%. Lower percentages of vertices having property q es-
sentially mean that propagation unfolds less, and thus the fixpoint of HyperDC is
reached sooner. However, it is worth mentioning that this is the case in several real
scenarios. For instance, [13] analyzed propagation in the Flickr social network and
found out that even the more popular photos have substantially limited popularity
outside the immediate network neighborhood of the uploader.

39



The runtime of DC is expected to be higher with more complex diffusion mod-
els. A structural analysis of the corresponding GAPs can provide insights on what
to expect from the diffusion model in terms of running time to evaluate it. In this
regard, the subclasses of GAPs and the optimizations introduced in Section 5 are
useful tools. For instance, if a GAP is p-monotonic and/or p-dwindling, we can
lower running times, as we can apply further optimizations and because the Hy-
perLFP converges more quickly. Another useful parameter to analyze is the size of
IΠ,p, which roughly speaking consists of the predicate symbols “interfering” with
p; we can expect better performances when IΠ,p is small. These analyses are useful
in practice to “tune” the diffusion model and find a good balance between accurate-
ness of the model and time to evaluate it. For instance, one might want to simplify
the considered diffusion model to make it p-monotonic, sacrificing its accurateness
in describing the diffusion process, but obtaining a more efficient evaluation.

To strengthen our claims about the advantage of DC in predicting the spread
initiated by given vertices, we used the MemeTracker data where diffusion oc-
curred naturally without our intervention. The parameters of the diffusion model
were estimated from the data (making sure to separate learning and testing data).
The results of this experiment showed that there is a correlation between the DC
values and the actual diffusion of memes: high diffusion centrality vertices diffuse
memes better than low diffusion centrality vertices. It also showed that diffusion
centrality is a better predictor of real meme diffusion than classical centrality mea-
sures.

8. Conclusion

Centrality and importance in social networks are closely interlinked concepts.
Central vertices are assumed to be important and vice versa. However, in real-
world online social networks, people who are considered important or authorita-
tive on some topics may be considered very unimportant on others. For instance, an
influential sports commentator is not likely to be an influential movie critic. More-
over, the importance of an individual should be measured by an influence related
factor. A person who can influence 1000 people about movies should be considered
more important (with regard to movies) than one who can influence just 500. Dif-
fusion models are a mechanism to capture the spread of concepts or phenomena
through a network. Many diffusion models have been developed to successfully
predict the extent of spread of memes and concepts through networks.

In this paper, we propose the novel concept of Diffusion Centrality and show
how it can be computed with respect to a wide array of diffusion models. [51]
shows that the framework of generalized annotated programs (GAPs) can express
most known diffusion models.
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. In this paper, we increase the breadth of knowledge about GAPs by intro-
ducing novel specific classes of GAPs and present the HyperDC algorithm that
exactly computes the top-k diffusion centrality vertices w.r.t. any GAP-expressible
diffusion models. In addition, we present a novel (but approximate) Coarsening
Back and Forth (CBAF) algorithm that allows us to take a huge social network,
and reduce it to a manageable size to efficiently solve (in an approximate way) the
problem of finding the top-k vertices.

We conduct a very detailed experimental study on several real-world social
networks. A first set of experiments compares the runtime and spread generated
via the HyperDC algorithm with classical centrality measures. Our results show
that HyperDC is efficient and produces better spread than current centrality mea-
sures. A second set of experiments looks at the scalability of CBAF, showing that
it almost always has a lower runtime than HyperDC, while achieving high spreads.
In particular, CBAF was tested on networks with over 2M vertices and over 20M
edges and achieved acceptable runtime. Using MemeTracker data, we show that
diffusion centrality captures the importance of people who are truly responsible for
the spread of a meme more effectively than past centrality measures.

This work opens up a dramatic new set of possible diffusion models that can
be automatically learned from data that take into account the rich semantics that
can be associated with vertices and edges in modern social networks like Twitter,
Facebook, and LinkedIn. For instance, in the case of predicting election outcomes
using Twitter data [30], we might learn rules that identify the likelihood that person
P will vote for a candidate C by taking their gender, demographic factors, tweets,
and the tendencies of their neighbors to vote for C. Alternatively, we might look
at the diffusion of banking crises throughout the world’s nations by considering
network flows of exposures—the nodes in such a network would be countries and
the edges would be labeled with the exposure a country has to another [44]. High
exposure of country A to country B would suggest that a systemic banking crisis in
country B could lead to default, triggering a systemic banking crisis in country A.
Clearly, there are many other factors to be considered. For instance, political fac-
tors (represented as semantic properties of vertices) might capture the likelihood
of country A taking intelligent steps to forestall a crisis. Mutual trust (a property
of the edge) might determine whether A and B can work together to address the
problem. Such a diffusion model will use the rich semantic opportunities offered
by research in knowledge representation via GAPs, as well as other paradigms, to
learn more fine-grained diffusion models than the relatively coarse grained diffu-
sion models that were developed in the past. We believe this would form a rich line
of inquiry for the future.
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[34] Kempe, D., Kleinberg, J. M., Tardos, É., 2005. Influential nodes in a diffusion
model for social networks. In: Proc. International Colloquium on Automata,
Languages and Programming. pp. 1127–1138.

[35] Kifer, M., Subrahmanian, V. S., 1992. Theory of generalized annotated logic
programming and its applications. Journal of Logic Programming 12 (3&4),
335–367.

[36] Kimura, M., Saito, K., Motoda, H., 2009. Efficient estimation of influence
functions for SIS model on social networks. In: Proc. International Joint Con-
ference on Artificial Intelligence. pp. 2046–2051.

44



[37] Kimura, M., Saito, K., Nakano, R., 2007. Extracting influential nodes for
information diffusion on a social network. In: Proc. AAAI Conference on
Artificial Intelligence. pp. 1371–1376.

[38] Leskovec, J., 2015. The Stanford Large Network Dataset Collection.
http://snap.stanford.edu/data/index.html.

[39] Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J. M.,
Glance, N. S., 2007. Cost-effective outbreak detection in networks. In: Proc.
International Conference on Knowledge Discovery and Data Mining. pp.
420–429.

[40] Lu, J. J., Nerode, A., Subrahmanian, V. S., 1996. Hybrid knowledge bases.
IEEE Transactions on Knowledge and Data Engineering 8 (5), 773–785.

[41] Mathioudakis, M., Bonchi, F., Castillo, C., Gionis, A., Ukkonen, A., 2011.
Sparsification of influence networks. In: Proc. International Conference on
Knowledge Discovery and Data Mining. pp. 529–537.

[42] McPherson, M., Smith-Lovin, L., Cook, J. M., 2001. Birds of a feather: Ho-
mophily in social networks. Annual Review of Sociology 27, 415–444.

[43] Memory, A., Kimmig, A., Bach, S. H., Raschid, L., Getoor, L., 2012. Graph
summarization in annotated data using probabilistic soft logic. In: Proc. In-
ternational Workshop on Uncertainty Reasoning for the Semantic Web. pp.
75–86.

[44] Minoiu, C., Kang, C., Subrahmanian, V. S., Berea, A., 2015. Does financial
connectedness predict crises? Quantitative Finance 15 (4), 607–624.

[45] Naseri, M. B., Elliott, G., 2011. Role of demographics, social connectedness
and prior internet experience in adoption of online shopping: Applications
for direct marketing. Journal of Targeting, Measurement and Analysis for
Marketing 19 (2), 69–84.

[46] Nieminen, J., 1974. On the centrality in a graph. Scandinavian Journal of
Psychology 15 (1), 332–336.

[47] Pearl, J., Russell, S., 1998. Bayesian Networks. Computer Science Depart-
ment, University of California.

[48] Purohit, M., Prakash, B. A., Kang, C., Zhang, Y., Subrahmanian, V. S., 2014.
Fast influence-based coarsening for large networks. In: Proc. International
Conference on Knowledge Discovery and Data Mining.

45



[49] Sabidussi, G., 1966. The centrality index of a graph. Psychometrika 31, 581–
603.

[50] Schelling, T., 1978. Micromotives and Macrobehavior. W.W. Norton and Co.

[51] Shakarian, P., Broecheler, M., Subrahmanian, V. S., Molinaro, C., 2013. Us-
ing generalized annotated programs to solve social network diffusion opti-
mization problems. ACM Transactions on Computational Logic 14 (2), 10.

[52] Szczepanski, P. L., Michalak, T. P., Wooldridge, M., 2014. A centrality mea-
sure for networks with community structure based on a generalization of the
Owen value. In: Proc. European Conference on Artificial Intelligence. pp.
867–872.

[53] Tang, J., Sun, J., Wang, C., Yang, Z., 2009. Social influence analysis in large-
scale networks. In: Proc. International Conference on Knowledge Discovery
and Data Mining. pp. 807–816.

[54] Toivonen, H., Zhou, F., Hartikainen, A., Hinkka, A., 2011. Compression of
weighted graphs. In: Proc. International Conference on Knowledge Discov-
ery and Data Mining. pp. 965–973.

[55] Toivonen, H., Zhou, F., Hartikainen, A., Hinkka, A., 2012. Network compres-
sion by node and edge mergers. In: Bisociative Knowledge Discovery - An
Introduction to Concept, Algorithms, Tools, and Applications. pp. 199–217.

[56] Wang, C., Chen, W., Wang, Y., 2012. Scalable influence maximization for
independent cascade model in large-scale social networks. Data Mining and
Knowledge Discovery 25 (3), 545–576.

[57] Watts, D., Peretti, J., 2007. Viral marketing for the real world. Harvard Busi-
ness Review.

Appendix A. Diffusion Models

Below we provide details on the diffusion models used in the experimental
evaluation. The Flickr model consists of the following rule (see [51]):

p(v) : µv′,v × µp × µq × dpF ← e(v′, v) : µv′,v ∧ p(v′) : µp ∧ q(v′) : µq

saying that if vertex v′ has properties q and p then it can diffuse property p to its
neighbor v. The value dpF is a constant representing the probability that the vertex
v will receive property p. This model falls into the category of cascade models.
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The Jackson-Yariv model is a diffusion model stating that a vertex will receive
(adopt) a property p according to the cumulative effect of its neighbors and the
ratio of the benefit to the cost of the vertex for adopting p. Suppose that vi is an
agent having a default behavior that can be changed in the new behavior p, and
that vi has specific cost ci and benefit bi for adopting the behavior p. Then, the
Jackson-Yariv model can be expressed by the rule (see [51]):

p(vi) : bi
ci
× r(

∑
j Ej)×

∑
j wj∑
j Ej
× wq × dpJY

←∧
vj |(vj ,vi)∈E

(
e(vj , vi) : Ej ∧ p(vj) : wj

)
∧ q(vi) : wq

where (1) r(
∑

j Ej) is a function describing how the number of neighbors of vi

affects the benefits to vi for adopting behavior p, (2)
∑
j wj∑
j Ej

is the fraction of the
neighbors of vi having property p, and (3) dpJY is a constant representing the
probability that the vertex v will adopt the property p. In our experiments we set
r(
∑

j Ej) to be a logarithmic function normalized by the logarithm of the maxi-
mum in-degree dinmax of the network, and having values within the interval [0.1, 2],

i.e., r(
∑

j Ej) = 1.9 × ln(
∑
j Ej)

ln(dinmax)
+ 0.1. When the annotation µ of an atom p(v),

with v ∈ V , becomes greater than 1, then we set µ = 1. Moreover, observe that
the vertex vi can adopt property p only if it also has property q. For the STEAM
data, we set bici = 1 for all vertices, while for the Non-Game networks we randomly
assigned bi

ci
to the vertices according to a normal distribution with 0.5 ≤ bi

ci
≤ 1.5.

The SIR model is a classic disease model which labels each vertex with sus-
ceptible if it has not had the disease but can receive it from one of its neighbors,
infectious if it has caught the disease and t units of time have not expired, and re-
covered when the vertex can no longer catch or transmit the disease. The diffusion
rules are following (see [51]):

p(v) :(1−R)× µev′,v × µ
p
v′ × (1−R′)× µqv × dpSIR ←

rt(v) : R ∧ e(v′, v) : µev′,v ∧ p(v′) : µpv′ ∧ rt(v
′) : R′ ∧ q(v) : µqv

ri(v) :µrv ← ri−1(v) : µrv, i ∈ [2, t]

r1(v) :µpv ← p(v) : µpv

Here, only the vertices having property q can be susceptible and the diffusion
property p represents that a vertex is infected. Properties ri (i 6= t) express that a
vertex is in the infectious state at time t−1 and rt means that a vertex is recovered.
In our experiments, we set t = 2. The constant dpSIR is the probability that the
vertex v will be infected. The SIR model falls into the category of cascade models.

We conclude this section by showing how the well-known linear threshold
model can be expressed with GAPs. Recall that in the linear threshold model,
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a vertex v is influenced by each neighbor w according to a weight bw,v such that∑
w neighbor of v

bw,v ≤ 1. Furthermore, each vertex v has a threshold θv ∈ [0, 1],

which is the weighted fraction of v’s neighbors that must become active in order
for v to become active, that is, v becomes active if

∑
w active neighbor of v

bw,v ≥ θv.

The GAP below captures the behavior of the linear threshold model. For each
vertex v, the GAP has a rule of the following form:

p(v) :

⌈( ∑
w neighbor of v

Bw,v ×Xw

)
− θv

⌉
←

∧
w neighbor of v

(
e(w, v) : Bw,v ∧ p(w) : Xw

)
Notice that the SN is assumed to be modeled with facts of the form e(w, v) : bv,w,
meaning that w is a neighbor of v and bw,v is the weight according to which w
influences v. If a vertex v is active, then p(v) : 1 holds, otherwise p(v) : 0 holds.

Appendix B. Proofs

Proposition 3. Consider an SN S , a property p, and a GAP Π. Let ψ be the
interpretation lfp(ΠS ∪ Π∗p). Then, lfp(Π ∪ ΠS)(p(v)) = lfp((Πp \ Π∗p) ∪ {A :
ψ(A) | A ∈ A})(p(v)) for every vertex v of S.

PROOF. All the rules in Π\Πp have a predicate in the head atom that cannot reach
predicate p, and then these rules do not affect the value of lfp(Π ∪ ΠS)(p(v)).
As we are interested in computing the diffusion centrality for property p, we can
ignore these rules in the computation. Moreover, rules in Πp can be partitioned
into two sets of rules, namely Π∗p and (Πp \ Π∗p), and by definition of Π∗p, we have
that rules in (Πp \ Π∗p) “depend on” rules in Π∗p because an atom having predicate
symbol q ∈ IΠ,p may appear in the head of a rule in Π∗p and in the body of a rule
in (Πp \ Π∗p), but not vice versa. Thus, the rules in (Πp \ Π∗p) do not contribute to
the least fixed point of Π∗p and then the value of ψ can be pre-computed. �.

Proposition 4. The Flickr model is p-monotonic and p-dwindling. The Jackson-
Yariv model is p-monotonic but not p-dwindling. The SIR model is neither p-
monotonic nor p-dwindling.

PROOF. The GAP describing the Flickr model is p-monotonic because the func-
tion µv′,v ×µp×µq × dpF in the head of its unique rule is clearly monotonic. The
GAP is also p-dwindling because the value of the function µv′,v × µp × µq × dpF
is less than or equal to any value that µp can assume, as the annotations µv′,v, µq
and the constant dpF can assume only values between 0 and 1.
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The GAP describing the Jackson-Yariv model is p-monotonic too. In fact, the
function in the head of its unique rule is monotonic as the term bi

ci
× r(

∑
j Ej) ×

1∑
j Ej
×dpJY is a constant. However, the GAP describing the Jackson-Yariv model

is not p-dwindling because of the term
∑

j ωj in the head atom function.
The GAP describing the SIR model is not p-monotonic because of the terms

(1−R) and (1−R′) in the head atom annotation function of the first rule (which
is (1 − R) × µev′,v × µ

p
v′ × (1 − R′) × µqv × dpSIR). Moreover, the GAP is not

p-dwindling. To see this, it is sufficient to note that, because of the presence of the
terms (1 − R) and (1 − R′) in the head atom annotation function of the first rule,
we cannot say that the value assumed by this function is always less than or equal
to R or R′ (remember that IΠSIR,p = {p, r1, r2}). �

Proposition 5. The worst-case time complexity of Algorithm HyperLFP isO(|N |+
1
α ·|H|·(log |H|+Umax·(Smax+log |H|))), whereUmax = maxv∈V,q∈IΠ,p{|{h | h ∈
H ∧ q(v) ∈ S(h)}|}, Smax = maxh∈H{|S(h)|}, and α is the minimum value ob-
tained at line 9 for (w −M ′[q][v]).

PROOF. The cost of making two copies of the matrix M at Lines 1-2 is O(|N |).
The loop at Line 5 is executed |H| times, as at each iteration we remove an hyper-
edge from Heap (Line 6). Within this loop, the predominant costs are the cost of
deleting the maximum from Heap (Line 6), which is O(log |H|), and the cost of
the loop at Line 10. This loop is executed for each hyper-edge h′ ∈ U [q][v] whose
number is Umax in the worst-case and at each iteration the cost of computing the
function W at Line 11 is O(Smax) in the worst-case, while the cost of adding
〈h′, w′〉 either to Heap (Line 16) or Heap′ (Line 18) is O(log |H|). Thus, the cost
of executing Lines 5-19 is O(|N | + |H| · (log|H| + Umax · Smax)). Finally, the
loop at Line 3 is executed 1

α times in the worst-case as 1 is the maximum growth
the annotation of an atom can have and α is the minimum increment step. �

Proposition 6. The worst-case time complexity of Algorithm HyperDC is O(|V | ·
(|N |+ 1

α ·|H|·(log |H|+Umax·(Smax+log |H|)))), whereUmax = maxv∈V {|{h | h ∈
H ∧v ∈ S(h)}|}, Smax = maxh∈H{|S(h)|}, and α is defined as in Proposition 5.

PROOF. By leveraging Proposition 1, the HyperDC algorithm computes one least
fix point for each vertex, so its worst-case time complexity is given by the number
of vertices (|V |) times the worst-case time complexity of the HyperLFP algorithm
(which isO(|N |+ 1

α ·|H|·(log |H|+Umax ·(Smax+log |H|)))) called at line 17. �
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